1.函數(shù)f(x)的導函數(shù)為f'(x),若對于定義域內(nèi)任意x1,x2(x1≠x2),有$\frac{{f({x_1})-f({x_2})}}{{{x_1}-{x_2}}}=f'({\frac{{{x_1}+{x_2}}}{2}})$恒成立,則稱f(x)為恒均變函數(shù).給出下列函數(shù):
①f(x)=2x+3;
②$f(x)=\frac{1}{x}$;
③f(x)=x2-2x+3;
④f(x)=ex
⑤f(x)=lnx.
其中為恒均變函數(shù)的序號是①③(寫出所有滿足條件的函數(shù)的序號)

分析 對于所給的每一個函數(shù),分別計算 $\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$和f′( $\frac{{{x}_{1}+x}_{2}}{2}$)的值,檢驗二者是否相等,從而根據(jù)恒均變函數(shù)”的定義,做出判斷.

解答 解:對于①f(x)=2x+3,
$\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$=$\frac{{2x}_{1}-{2x}_{2}}{{{x}_{1}-x}_{2}}$=2,f′( $\frac{{{x}_{1}+x}_{2}}{2}$)=2,
滿足 $\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$=f′( $\frac{{{x}_{1}+x}_{2}}{2}$),為恒均變函數(shù).
對于②f(x)=$\frac{1}{x}$,
$\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$=$\frac{\frac{1}{{x}_{1}}-\frac{1}{{x}_{2}}}{{{x}_{1}-x}_{2}}$=-$\frac{1}{{{x}_{1}x}_{2}}$,f′( $\frac{{{x}_{1}+x}_{2}}{2}$)=-$\frac{4}{{({{x}_{1}+x}_{2})}^{2}}$,
顯然不滿足 $\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$=f′( $\frac{{{x}_{1}+x}_{2}}{2}$),故不是恒均變函數(shù).
對于③f(x)=x2-2x+3,
$\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$=$\frac{{(x}_{1}{-x}_{2}){(x}_{1}{+x}_{2}-2)}{{{x}_{1}-x}_{2}}$=x1+x2-2
f′( $\frac{{{x}_{1}+x}_{2}}{2}$)=2•$\frac{{{x}_{1}+x}_{2}}{2}$-2=x1+x2-2,
故滿足 $\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$=f′( $\frac{{{x}_{1}+x}_{2}}{2}$)為恒均變函數(shù).
對于④f(x)=ex ,
$\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$=$\frac{{{e}^{{x}_{1}}-e}^{{x}_{2}}}{{{x}_{1}-x}_{2}}$,f′( $\frac{{{x}_{1}+x}_{2}}{2}$)=${e}^{\frac{{{x}_{1}+x}_{2}}{2}}$,
顯然不滿足$\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$=f′( $\frac{{{x}_{1}+x}_{2}}{2}$),故不是恒均變函數(shù).
對于⑤f(x)=lnx,
$\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$=$\frac{l{nx}_{1}-l{nx}_{2}}{{{x}_{1}-x}_{2}}$=$\frac{ln\frac{{x}_{1}}{{x}_{2}}}{{{x}_{1}-x}_{2}}$,f′( $\frac{{{x}_{1}+x}_{2}}{2}$)=$\frac{2}{{{x}_{1}+x}_{2}}$,
顯然不滿足 $\frac{f{(x}_{1})-f{(x}_{2})}{{{x}_{1}-x}_{2}}$=f′( $\frac{{{x}_{1}+x}_{2}}{2}$),故不是恒均變函數(shù).
故答案為:①③.

點評 本題主要考查函數(shù)的導數(shù)運算,“恒均變函數(shù)”的定義,判斷命題的真假.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

11.在甲、乙等5位學生參加的一次社區(qū)專場演唱會中,每位學生的節(jié)目集中安排在一起演出,若采用抽簽的方法隨機確定各位學生的演出順序(序號為1,2,3,4,5).
(1)甲、乙兩人的演出序號至少有一個為偶數(shù)的概率;
(2)甲、乙兩人的演出序號不相鄰的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

12.若曲線 ${C_1}:y={x^2}$與曲線 ${C_2}:y=a{e^x}(a≠0)$存在唯一條公共切線,則a的取值范圍為a<0或a=$\frac{4}{{e}^{2}}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.數(shù)列{an},{bn}為等差數(shù)列,前n項和分別為Sn,Tn,若$\frac{S_n}{T_n}=\frac{3n+2}{2n}$,則$\frac{a_7}{b_7}$=( 。
A.$\frac{41}{26}$B.$\frac{23}{14}$C.$\frac{11}{7}$D.$\frac{11}{6}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.已知橢圓E的左、右焦點分別為F1,F(xiàn)2,過F1且斜率為2的直線交橢圓E于P,Q兩點,若$\overrightarrow{P{F_1}}•\overrightarrow{P{F_2}}=0$,則橢圓E的離心率為( 。
A.$\frac{{\sqrt{5}}}{3}$B.$\frac{2}{3}$C.$\frac{{\sqrt{2}}}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.給出下列四個命題:
①命題“?x∈(0,2),2x>x2”的否定是“?x∈(0,2),2x≤x2”;
②若直線l上有無數(shù)個點不在平面α內(nèi),則l∥α;
③若隨機變量ξ:N(1,σ2)且P(ξ<2)=0.7,則P(0<ξ<1)=0.3;
④等差數(shù)列{an}的前n項和為Sn,若a6=3,則S11=33.
其中真命題的序號是①④(寫出所有真命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

13.如圖所示的多面體ABCDE中,已知AB∥DE,AB⊥AD,AD=2$\sqrt{3}$,AC=CD=DE=2AB=2,BC=$\sqrt{5}$,F(xiàn)是CD的中點.
(Ⅰ)求證:AF∥平面BCE;
(Ⅱ)求多面體ABCDE的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.某班共有學生50人,在一次數(shù)學測試中,要搜索出測試中及格(60分及以上)的成績,試設(shè)計一個算法,并畫出程序框圖.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知圓C經(jīng)過坐標原點O和點A(4,2),圓心C在直線x+2y-1=0上,則圓心到弦OA的距離為$\sqrt{5}$.

查看答案和解析>>

同步練習冊答案