1.現(xiàn)對(duì)一個(gè)生產(chǎn)茶杯的工廠的日產(chǎn)量進(jìn)行統(tǒng)計(jì),下面是50天的統(tǒng)計(jì)結(jié)果(單位:個(gè))
日產(chǎn)量222527
頻數(shù)1035a
(1)根據(jù)上表的數(shù)據(jù),求一天的產(chǎn)量分別為22個(gè),25個(gè)和27個(gè)的頻率;
(2)假設(shè)工廠各天的茶杯產(chǎn)量相互獨(dú)立,每個(gè)茶杯的成本為10元,且每天生產(chǎn)的茶杯均能以每個(gè)20元銷(xiāo)售完.若以上述頻率作為概率,ξ表示該工廠兩天生產(chǎn)的茶杯的利潤(rùn)和(單位:元),求ξ的分布列;
(3)若該工廠兩天生產(chǎn)的茶杯的利潤(rùn)和的期望值超過(guò)480元,則可被評(píng)為先進(jìn)單位.請(qǐng)估計(jì)該工廠能否被評(píng)為先進(jìn)單位?

分析 (Ⅰ)由題意先求出a,由此能求出一天的產(chǎn)量為22個(gè),25個(gè)和27個(gè)的頻率.
(Ⅱ)設(shè)ξ表示該工廠兩天生產(chǎn)的茶杯的利潤(rùn)和,則ξ的可能值為440,470,490,500,520,540,分別求出相應(yīng)的概率,由此能求出ξ的分布列.
(Ⅲ)求出Eξ,由此能求出該工廠兩天生產(chǎn)的茶杯的平均利潤(rùn)和超過(guò)480元,可被評(píng)為先進(jìn)單位.

解答 解:(Ⅰ)由題意a=50-10-35=5,
一天的產(chǎn)量為22個(gè),25個(gè)和27個(gè)的頻率分別為0.2,0.7和0.1.…(3分)
(Ⅱ)設(shè)ξ表示該工廠兩天生產(chǎn)的茶杯的利潤(rùn)和(單位:元),
則ξ的可能值為440,470,490,500,520,540,
且P(ξ=440)=0.22=0.04,
P(ξ=470)=2×0.2×0.7=0.28,
P(ξ=490)=2×0.2×0.1=0.04,
P(ξ=500)=0.72=0.49,
P(ξ=520)=2×0.7×0.1=0.14,
P(ξ=540)=0.12=0.01.
從而ξ的分布列為

ξ
440

470

490

500

520

540
P0.040.280.040.490.140.01
(10分)
(Ⅲ)Eξ=440×0.04+470×0.28+490×0.04+500×0.49+520×0.14+540×0.01=492(元)
故該工廠兩天生產(chǎn)的茶杯的平均利潤(rùn)和超過(guò)480元,可被評(píng)為先進(jìn)單位.…(12分)

點(diǎn)評(píng) 本題考查離散型隨機(jī)變量的分布列及數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,注意頻率分布表的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.已知函數(shù)f(x)=x(a-lnx)-1(a∈R).
(1)若a=2,求函數(shù)f(x)在(1,e2)上的零點(diǎn)個(gè)數(shù)(e為自然對(duì)數(shù)的底數(shù));
(2)若f(x)在區(qū)間(1,e2)上是單調(diào)函數(shù),求a的取值集合;
(3)若f(x)有兩零點(diǎn)x1,x2(x1<x2),求證:x1+x2>2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知i是虛數(shù)單位,復(fù)數(shù)Z=$\frac{4+2i}{1-i}$,則復(fù)數(shù) $\overline Z$的虛部是( 。
A.-3B.3C.-3iD.3i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.國(guó)內(nèi)某大學(xué)有男生6000人,女生4000人,該校想了解本校學(xué)生的運(yùn)動(dòng)狀況,根據(jù)性別采取分層抽樣的方法從全校學(xué)生中抽取100人,調(diào)查他們平均每天運(yùn)動(dòng)的時(shí)間(單位:小時(shí)),統(tǒng)計(jì)表明該校學(xué)生平均每天運(yùn)動(dòng)的時(shí)間范圍是[0,3],若規(guī)定平均每天運(yùn)動(dòng)的時(shí)間不少于2小時(shí)的學(xué)生為“運(yùn)動(dòng)達(dá)人”,低于2小時(shí)的學(xué)生為“非運(yùn)動(dòng)達(dá)人”.根據(jù)調(diào)查的數(shù)據(jù)按性別與“是否為‘運(yùn)動(dòng)達(dá)人’”進(jìn)行統(tǒng)計(jì),得到如表2×2列聯(lián)表:
運(yùn)動(dòng)時(shí)間
性別 
運(yùn)動(dòng)達(dá)人非運(yùn)動(dòng)達(dá)人合計(jì)
男生 36
女生 26
合計(jì)100 
(1)請(qǐng)根據(jù)題目信息,將2×2列聯(lián)表中的數(shù)據(jù)補(bǔ)充完整,并通過(guò)計(jì)算判斷能否在犯錯(cuò)誤概率不超過(guò)0.025的前提下認(rèn)為性別與“是否為‘運(yùn)動(dòng)達(dá)人’”有關(guān);
(2)將此樣本的頻率估計(jì)為總體的概率,隨機(jī)調(diào)查該校的3名男生,設(shè)調(diào)查的3人中運(yùn)動(dòng)達(dá)人的人數(shù)為隨機(jī)變量X,求X的分布列和數(shù)學(xué)期望E(X)及方差D(X).附表及公式:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635
K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知函數(shù)f(x)=Acos(ωx+$\frac{π}{4}$)(A>0)在(0,$\frac{π}{8}$)上是減函數(shù),則ω的最大值為( 。
A.12B.$\frac{10}{3}$C.$\frac{8}{3}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知數(shù)列 {an} 的前n項(xiàng)和是Sn且2Sn=2-an
(Ⅰ)求數(shù)列{an} 的通項(xiàng)公式;
(Ⅱ)記bn=n•an,求數(shù)列{bn} 的前n項(xiàng)的和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.已知數(shù)列2,$\sqrt{10}$,4,…,$\sqrt{2(3n-1)}$,…,那么8是這個(gè)數(shù)列的第11項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.若橢圓$\frac{x^2}{100}$+$\frac{y^2}{36}$=1上一點(diǎn)P到焦點(diǎn)F1的距離等于8,則點(diǎn)P到另一個(gè)焦點(diǎn)F2的距離是(  )
A.4B.8C.12D.14

查看答案和解析>>

同步練習(xí)冊(cè)答案