18.設(shè)全集U={x∈N|x<8},集合A={2,0,1,6},B={2,0,1,7},C={2,0,1,5},則∁U((A∩C)∪B)=( 。
A.{2,0,1,7}B.{0,6,7,8}C.{2,3,4,5}D.{3,4,5,6}

分析 用列舉法寫出全集U,根據(jù)交集、并集和補集的定義寫出運算結(jié)果即可.

解答 解:全集U={x∈N|x<8}={0,1,2,3,4,5,6,7},
集合A={2,0,1,6},B={2,0,1,7},C={2,0,1,5},
A∩C={2,0,1},
(A∩C)∪B={2,0,1,7},
U((A∩C)∪B)={3,4,5,6}.
故選:B.

點評 本題考查了集合的表示法與基本運算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)$f(x)=\frac{3x}{2x+3}$,數(shù)列{an}滿足a1=1,an+1=f(an),n∈N*,
(1)求a2,a3,a4的值;
(2)求證:數(shù)列$\left\{{\frac{1}{a_n}}\right\}$是等差數(shù)列;
(3)設(shè)數(shù)列{bn}滿足bn=an-1•an(n≥2),b1=3,Sn=b1+b2+…+bn,若${S_n}<\frac{m-2015}{2}$對一切n∈N*成立,求最小正整數(shù)m的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.在平面直角坐標(biāo)系xOy中,已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=l (a>b>0)的焦距為2,離心率為$\frac{\sqrt{2}}{2}$,橢圓的右頂點為A.
(1)求該橢圓的方程:
(2)過點D($\sqrt{2}$,-$\sqrt{2}$)作直線PQ交橢圓于兩個不同點P,Q,求證:直線AP,AQ的
斜率之和為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)向量$\overrightarrow{a}$、$\overrightarrow$的夾角為θ(其中0<θ≤π),|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,若(2$\overrightarrow{a}$-$\overrightarrow$)⊥(k$\overrightarrow{a}$+$\overrightarrow$),則實數(shù)k的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)i、j、n∈N*,i≠j,集合Mn={(i,j)|4•3n<3i+3j<4•3n+1},則集合Mn中元素的個數(shù)為2n個.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,等邊三角形ABC與等腰直角三角形DBC公共邊BC,BC=$\sqrt{2}$,DB=DC,AD=$\sqrt{3}$.
(1)求證:BC⊥AD;
(2)求點B到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.記min{x,y}=$\left\{\begin{array}{l}{y,x≥y}\\{x,x<y}\end{array}\right.$設(shè)f(x)=min{x2,x3},則(  )
A.存在t>0,|f(t)+f(-t)|>f(t)-f(-t)B.存在t>0,|f(t)-f(-t)|>f(t)-f(-t)
C.存在t>0,|f(1+t)+f(1-t)|>f(1+t)+f(1-t)D.存在t>0,|f(1+t)-f(1-t)|>f(1+t)-f(1-t)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若正數(shù)x,y滿足$\frac{1}{y}+\frac{3}{x}=1$,則3x+4y的最小值是(  )
A.24B.28C.25D.26

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.若不等式|x-2|+|x-3|<3的解集是(a,b),則$\int_a^b{(\sqrt{x}-1)dx=}$( 。
A.$\frac{7}{3}$B.$\frac{10}{3}$C.$\frac{5}{3}$D.3

查看答案和解析>>

同步練習(xí)冊答案