4.已知$\frac{sina}{sina+cosa}$=$\frac{1}{2}$,且向量$\overrightarrow{AB}$=(tanα,1),$\overrightarrow{BC}$=(2,tanα),則$\overrightarrow{AC}$等于( 。
A.(-2,3)B.(1,2)C.(4,3)D.(3,2)

分析 根據(jù)$\frac{sina}{sina+cosa}$=$\frac{1}{2}$,求出tanα的值,根據(jù)向量加減運(yùn)用可是答案.

解答 解:已知$\frac{sina}{sina+cosa}$=$\frac{1}{2}$,即$\frac{sinα+cosα}{sinα}=2$,
可得1+$\frac{1}{tanα}=2$,
∴tanα=1.
則向量$\overrightarrow{AB}$=(1,1),$\overrightarrow{BC}$=(2,1),
∴$\overrightarrow{AC}$=$\overrightarrow{AB}$+$\overrightarrow{BC}$=(3,2)
故選:D.

點(diǎn)評(píng) 本題考查了同角函數(shù)關(guān)系式的計(jì)算和向量加減的運(yùn)用.屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知復(fù)數(shù)z1=1-2i,z2=3+4i,i為虛數(shù)單位.
(Ⅰ)若復(fù)數(shù)|z2|+az1對(duì)應(yīng)的點(diǎn)在第四象限,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若z(z1+z2)=z1-z2,求z的共軛復(fù)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

15.已知向量$\overrightarrow{a}$=(2k,3),$\overrightarrow$=( 5,1),且 $\overrightarrow{a}$∥$\overrightarrow$,則實(shí)數(shù)k=( 。
A.$-\frac{9}{2}$B.$\frac{15}{2}$C.$-\frac{3}{10}$D.-5

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.球O為正方體ABCD-A1B1C1D1的內(nèi)切球,AB=2,E,F(xiàn)分別為棱AD,CC1的中點(diǎn),則直線EF被球O截得的線段長(zhǎng)為$\sqrt{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.已知$\vec a=({{x^2},2x})$,$\vec b=({1,tanθ})$,函數(shù)$f(x)=\vec a•\vec b-1$,$x∈[-1,\sqrt{3}]$,其中$θ∈({-\frac{π}{2},\frac{π}{2}})$.
(1)當(dāng)$θ=-\frac{π}{6}$時(shí),求函數(shù)f(x)的最大值和最小值;
(2)求θ的取值范圍,使y=f(x)在區(qū)間$[-1,\sqrt{3}]$上是單調(diào)的.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.在平行四邊形ABCD 中,$∠A=\frac{π}{3}$,邊AB、AD長(zhǎng)分別為2、1,若E、F分別是邊BC、CD上的點(diǎn),且滿(mǎn)足$\frac{{|{\overrightarrow{CE}}|}}{{|{\overrightarrow{CB}}|}}=\frac{{|{\overrightarrow{DF}}|}}{{|{\overrightarrow{DC}}|}}$,則$\overrightarrow{AE}•\overrightarrow{AF}$的取值范圍是[2,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.已知二次函數(shù)f(x)=ax2+bx+c(a<0)不等式f(x)>-2x的解集為(1,3)
(Ⅰ)若方程f(x)+6a=0有兩個(gè)相等的實(shí)根,求f(x)的解析式;
(Ⅱ)若f(x)的最大值為正數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.若隨機(jī)變量ξ的分布列為
ξ01
Pmn
其中m∈(0,1),則下列結(jié)果中正確的是( 。
A.E(ξ)=m,D(ξ)=n3B.E(ξ)=n,D(ξ)=n2C.E(ξ)=1-m,D(ξ)=m-m2D.E(ξ)=1-m,D(ξ)=m2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.如圖,已知四邊形ABCD是平行四邊形,點(diǎn)P是平面ABCD外一點(diǎn),M是PC的中點(diǎn),
在DM上取一點(diǎn)G,過(guò)G和AP作平面交平面BDM于GH.
(Ⅰ)求證:AP∥平面BDM;
(Ⅱ)若G為DM中點(diǎn),求證:$\frac{GH}{PA}$=$\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案