14.已知復(fù)數(shù)z1=1-2i,z2=3+4i,i為虛數(shù)單位.
(Ⅰ)若復(fù)數(shù)|z2|+az1對(duì)應(yīng)的點(diǎn)在第四象限,求實(shí)數(shù)a的取值范圍;
(Ⅱ)若z(z1+z2)=z1-z2,求z的共軛復(fù)數(shù).

分析 (Ⅰ)把z1=1-2i,z2=3+4i代入|z2|+az1,化簡(jiǎn)整理后由實(shí)部大于0且虛部小于0聯(lián)立不等式組求解;
(Ⅱ)把z1=1-2i,z2=3+4i代入z(z1+z2)=z1-z2,然后利用復(fù)數(shù)代數(shù)形式的乘除運(yùn)算化簡(jiǎn),再由共軛復(fù)數(shù)的概念得答案.

解答 解:(Ⅰ)|z2|+az1=5+a(1-2i)=(5+a)-2ai,
由題意得$\left\{\begin{array}{l}5+a>0\\-2a<0\end{array}\right.$,
解得a>0;
(Ⅱ)由z(z1+z2)=z1-z2,得
$z=\frac{{{z_1}-{z_2}}}{{{z_1}+{z_2}}}=\frac{(1-2i)-(3+4i)}{(1-2i)+(3+4i)}=\frac{-2-6i}{4+2i}=-1-i,\overline z=-1+i$.

點(diǎn)評(píng) 本題考查復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)的基本概念,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.已知函數(shù)y=f(x)是定義在R上的偶函數(shù),滿(mǎn)足f(2+x)=f(2-x),若函數(shù)y=f(x)在(0,4)上至少有一個(gè)零點(diǎn),且f(0)=0,則函數(shù)y=f(x)在(-8,10]上的零點(diǎn)個(gè)數(shù)至少為9.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.“0<x<5”是“-2<x<6”成立的( 。
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知f(x)=x2+mx+1(m∈R),g(x)=ex
(1)當(dāng)x∈[0,2]時(shí),F(xiàn)(x)=f(x)-g(x)為增函數(shù),求實(shí)數(shù)m的取值范圍;
(2)設(shè)函數(shù)$G(x)=\frac{f(x)}{g(x)},H(x)=-\frac{1}{4}x+\frac{5}{4}$,若不等式G(x)≤H(x)對(duì)x∈[0,5]恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.已知($\sqrt{x}$-ax)5的展開(kāi)式中含x${\;}^{\frac{7}{2}}$的項(xiàng)的系數(shù)是90,則a=3或-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,小華和小明兩個(gè)小伙伴在一起做游戲,他們通過(guò)劃拳(剪刀、石頭、布)比賽決勝誰(shuí)首先登上第3個(gè)臺(tái)階,他們規(guī)定從平地開(kāi)始,每次劃拳贏的一方登上一級(jí)臺(tái)階,輸?shù)囊环皆夭粍?dòng),平局時(shí)兩個(gè)人都上一級(jí)臺(tái)階,如果一方連續(xù)兩次贏,那么他將額外獲得一次上一級(jí)臺(tái)階的獎(jiǎng)勵(lì),除非已經(jīng)登上第3個(gè)臺(tái)階,當(dāng)有任何一方登上第3個(gè)臺(tái)階時(shí),游戲結(jié)束,記此時(shí)兩個(gè)小伙伴劃拳的次數(shù)為X.
(1)求游戲結(jié)束時(shí)小華在第2個(gè)臺(tái)階的概率;
(2)求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=(1+a)lnx+$\frac{2(1-a){x}^{2}+1}{x}$(a∈R).
(1)當(dāng)a>1時(shí),求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若對(duì)任意a∈(2,3)及x1,x2∈[1,3],恒有(m+ln3)(1-a)-2ln3>f(x1)-f(x2)成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知△ABC中,AB=$\sqrt{3}$,AC=1且B=30°,則△ABC的面積等于(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{3}}{4}$C.$\frac{\sqrt{3}}{2}$ 或$\sqrt{3}$D.$\frac{\sqrt{3}}{4}$ 或$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知$\frac{sina}{sina+cosa}$=$\frac{1}{2}$,且向量$\overrightarrow{AB}$=(tanα,1),$\overrightarrow{BC}$=(2,tanα),則$\overrightarrow{AC}$等于(  )
A.(-2,3)B.(1,2)C.(4,3)D.(3,2)

查看答案和解析>>

同步練習(xí)冊(cè)答案