18.已知函數(shù)f(x)=4cosωxsin(ωx-$\frac{π}{6}$)(ω>0)的最小正周期是π.
(1)求函數(shù)f(x)在區(qū)間x∈(0,π)的單調(diào)遞增區(qū)間;
(2)求f(x)在$[{\frac{π}{6},\frac{2π}{3}}]$上的最大值和最小值.

分析 (1)利用二倍角和兩角和與差以及輔助角公式基本公式將函數(shù)化為y=Asin(ωx+φ)的形式,根據(jù)周期公式求出ω,將內(nèi)層函數(shù)看作整體,放到正弦函數(shù)的增區(qū)間上,解不等式得函數(shù)的單調(diào)遞增區(qū)間;即可得x∈(0,π)的單調(diào)遞增區(qū)間;
(2)x∈$[{\frac{π}{6},\frac{2π}{3}}]$上時(shí),求出內(nèi)層函數(shù)的取值范圍,結(jié)合三角函數(shù)的圖象和性質(zhì),求出f(x)的最大值和最小值即可.

解答 解:(1)函數(shù)f(x)=4cosωxsin(ωx-$\frac{π}{6}$)
化簡(jiǎn)可得:f(x)=4cosωxsinωxcos$\frac{π}{6}$-4cos2ωxsin$\frac{π}{6}$=$\sqrt{3}$sin2ωx-2cos2ωx=$\sqrt{3}$sin2ωx-cos2ωx-1=2sin(2ωx$-\frac{π}{6}$)-1
∵函數(shù)f(x)的最小正周期是π,即$π=\frac{2π}{2ω}$,
∴ω=1,
那么f(x)=2sin(2x$-\frac{π}{6}$)-1.
由$-\frac{π}{2}+2kπ≤$2x$-\frac{π}{6}$$≤\frac{π}{2}+2kπ$,k∈Z,
得:$-\frac{π}{6}+kπ$≤x≤$\frac{π}{3}+kπ$,
∵x∈(0,π)
∴函數(shù)f(x)在區(qū)間x∈(0,π)的單調(diào)遞增區(qū)間為(0,$\frac{π}{3}$)和($\frac{5π}{6},π$).
(2)x∈$[{\frac{π}{6},\frac{2π}{3}}]$上時(shí),
2x$-\frac{π}{6}$∈[$\frac{π}{6}$,$\frac{7π}{6}$]
當(dāng)2x$-\frac{π}{6}$=$\frac{π}{2}$時(shí),f(x)的最大值為2sin$\frac{π}{2}-1=1$;
當(dāng)2x$-\frac{π}{6}$=$\frac{7π}{6}$時(shí),f(x)的最小值為2sin$\frac{7π}{6}-1$=-2;
∴f(x)在$[{\frac{π}{6},\frac{2π}{3}}]$上的最大值為1,最小值為-2.

點(diǎn)評(píng) 本題主要考查對(duì)三角函數(shù)的化簡(jiǎn)能力和三角函數(shù)的圖象和性質(zhì)的運(yùn)用,利用三角函數(shù)公式將函數(shù)進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵.屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知向量$\overrightarrow a=(1,\sqrt{3})$,$\overrightarrow b=(cosx,sinx)$,函數(shù)$f(x)=\overrightarrow a•\overrightarrow b-1$.
(1)若f(x)=0,求x的集合;
(2)若$x∈[0,\frac{π}{2}]$,求f(x)的單調(diào)區(qū)間及最值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.已知P,A,B是雙曲線$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1(a>0,b>0)$上不同的三點(diǎn),且A,B關(guān)于原點(diǎn)對(duì)稱(chēng),若直線PA,PB的斜率乘積${k_{PA}}•{k_{PB}}=\frac{3}{4}$,則該雙曲線的離心率是(  )
A.2B.$\frac{{\sqrt{3}}}{2}$C.$\frac{{\sqrt{7}}}{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,直線l的參數(shù)方程為$\left\{\begin{array}{l}x=\frac{{\sqrt{3}}}{3}t\\ y=t-\sqrt{3}\end{array}\right.$,曲線C的極坐標(biāo)方程為ρ=2cosθ.
(1)寫(xiě)出直線l的直角坐標(biāo)方程和曲線C的普通方程;
(2)求直線l與曲線C的交點(diǎn)的直角坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.在所有的兩位數(shù)中,十位數(shù)字大于個(gè)位數(shù)字的兩位數(shù)共有( 。
A.50B.45C.36D.35

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知$\overrightarrow a$=(sinωx,cosωx),$\overrightarrow b$=(sinωx+2cosωx,cosωx),x∈R,ω>0,記f(x)=$\overrightarrow a•\overrightarrow b$且該函數(shù)的最小正周期為$\frac{π}{4}$.
(1)求ω的值;
(2)求函數(shù)f(x)的最大值,并且求使f(x)取得最大值的x的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.函數(shù)$f(x)={2^x}+xln\frac{1}{4}$在區(qū)間[-2,2]上的最大值為( 。
A.$\frac{1}{4}+4ln2$B.4(1-ln2)C.2(1-ln2)D.4(2ln2-1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.給出下面四個(gè)命題:①$\overrightarrow{AB}$+$\overrightarrow{BA}$=$\overrightarrow{0}$;②$\overrightarrow{AB}$+$\overrightarrow{BC}$=$\overrightarrow{AC}$;③$\overrightarrow{AB}$-$\overrightarrow{AC}$=$\overrightarrow{BC}$;其中正確的個(gè)數(shù)為( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.0個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.在△ABC中,若$\frac{cosA}{cosC}$=$\frac{c}{a}$,則△ABC的形狀是(  )
A.等腰直角三角形B.直角三角形
C.等腰或直角三角形D.等邊三角形

查看答案和解析>>

同步練習(xí)冊(cè)答案