分析 將函數(shù)進行變形,構造函數(shù),利用函數(shù)奇偶性的性質即可得到結論.
解答 解:由題意,f(x)=3-$\frac{xcosx}{{e}^{|x|}}$,
令g(x)=f(x)-3=-$\frac{xcosx}{{e}^{|x|}}$,
則g(-x)=-$\frac{-xcos(-x)}{{e}^{|x|}}$=-g(x),即函數(shù)g(x)是奇函數(shù),
∴g(x)max+g(x)min=0,
∵$f(x)=\frac{{3{e^{|x|}}-xcosx}}{{{e^{|x|}}}}$在$x∈[-\frac{π}{2},\frac{π}{2}]$上的最大值為p,最小值為q,
∴p-3+q-3=0,
∴p+q=6.
故答案為:6.
點評 本題主要考查函數(shù)的最值的計算,根據(jù)條件構造新函數(shù),利用函數(shù)的奇偶性的性質是解決本題的關鍵.
科目:高中數(shù)學 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 4 | C. | 5 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ①② | B. | ② | C. | ③ | D. | ①②③ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $-\frac{{\sqrt{3}}}{3}$ | B. | $\frac{{\sqrt{3}}}{3}$ | C. | $\sqrt{3}$ | D. | $-\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 4 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 模型①擬合效果好 | B. | 模型①與②的擬合效果一樣好 | ||
C. | 模型②擬合效果好 | D. | 模型①負相關 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com