分析 (1)由已知可得△ABP、△BCP為等腰三角形,設(shè)BP=2x,求解直角三角形可得x值,得到AB⊥AP,取CD中點G,證明PG⊥CD可得答案;
(2)在平面PCD內(nèi)過P作直線l∥CD,由(1)可得∠APG為平面BAP與平面PCD所成角,利用余弦定理得答案.
解答 (1)證明:如圖,
∵點A在平面PBC上的射影為PB的中點O,
∴BO=OP,且AO⊥PB,則AB=AP,
由AO⊥BP,BP⊥AC,可得BP⊥平面AOC,則BP⊥OC,得BC=PC,
設(shè)BP=2x,則AO=OC=$\sqrt{(\sqrt{2})^{2}-{x}^{2}}$,再由AO2+OC2=AC2,得$2(2-{x}^{2})=(\sqrt{2})^{2}$,
解得:x=1,
∴BP=2,則AB2+AP2=BP2,∴AB⊥AP,
取CD中點G,連接AG,則AG⊥CD,又AB∥CD,AB⊥AP,
∴AP⊥CD,則CD⊥平面APG,得CD⊥PG,
∵G為CD中點,∴PC=PD;
(2)解:在平面PCD內(nèi)過P作直線l∥CD,
∵AB∥CD,由平行公理可得AB∥l,則l為平面BAP與平面PCD的交線,
∵CD⊥平面APG,∴l(xiāng)⊥平面APG,則PA⊥l,PG⊥l,
即∠APG為平面BAP與平面PCD所成角,
在△APG中,由(1)得,AP=$\sqrt{2}$,PG=AG=$\sqrt{(\sqrt{2})^{2}-(\frac{\sqrt{2}}{2})^{2}}=\frac{\sqrt{6}}{2}$,
∴cos∠APG=$\frac{(\sqrt{2})^{2}+(\frac{\sqrt{6}}{2})^{2}-(\frac{\sqrt{6}}{2})^{2}}{2×\sqrt{2}×\frac{\sqrt{6}}{2}}=\frac{\sqrt{3}}{3}$.
∴平面BAP與平面PCD所成銳二面角的余弦值為$\frac{\sqrt{3}}{3}$.
點評 本題考查空間中的點、線、面的距離的計算,考查二面角的平面角的求法,考查了空間想象能力和思維能力,考查數(shù)學(xué)轉(zhuǎn)化思想方法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -2 | B. | -1 | C. | 0 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{3}$ | B. | -$\frac{1}{3}$ | C. | $\frac{2}{3}$ | D. | -$\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 0 | C. | -$\frac{2\sqrt{3}}{9}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4里55步 | B. | 3里125步 | C. | 7里125步 | D. | 6里55步 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com