分析 由命題p寫出分段函數,結合函數的單調性列關于a的不等式求得a的范圍;由關于x的方程x2-4x+8a=0有解,可得△≥0求得q為真命題的a的范圍.然后分別由p真q假和p假q真求出a的范圍,取并集得答案.
解答 解:由已知得$f(x)=\left\{\begin{array}{l}2x-a,x≥a\\ a,x<a\end{array}\right.$,∴f(x)在[a,+∞)上單調遞增.
若p為真命題,則[a2-2,+∞)⊆[a,+∞),∴a2-2≥a,解得a≤-1或a≥2;
若q為真命題,△=42-4×8a≥0,即8a≤4,解得$a≤\frac{2}{3}$.
∵p∨q為真命題,p∧q為假命題,∴p、q一真一假,
當p真q假時,$\left\{\begin{array}{l}a≤-1\\ a>\frac{2}{3}\end{array}\right.$或$\begin{array}{l}a≥2\end{array}$,即a≥2;
當p假q真時,$\left\{\begin{array}{l}{-1<a<2}\\{a≤\frac{2}{3}}\end{array}\right.$,即-1$<a≤\frac{2}{3}$.
故實數a的取值范圍是(-1,$\frac{2}{3}$]∪[2,+∞).
點評 本題考查命題的真假判斷與應用,考查復合命題的真假判斷,考查函數單調性的應用,是中檔題.
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | 2 | B. | -2 | C. | $-\frac{1}{2}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:選擇題
A. | $\sqrt{5}$ | B. | $\frac{\sqrt{5}}{2}$ | C. | $\sqrt{2}$+1 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
科目:高中數學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com