9.若l1:x+(1+m)y+m-1=0,l2:mx+2y+6=0是兩條平行直線,則m的值是( 。
A.m=1或m=-2B.m=1C.m=-2D.m的值不存在

分析 利用兩條直線平行的充要條件即可得出.

解答 解:由m(1+m)-2=0,化為:m2+m-2=0,解得m=-2或1.
經(jīng)過驗證m=-2時兩條直線重合,舍去.
∴m=1.
故選:B.

點評 本題考查了兩條直線平行的充要條件.,考查了推理能力與計算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.在平面直角坐標(biāo)系中,設(shè)△ABC的頂點分別為A(0,a),B(b,0),C(c,0),點P(0,p)在線段AO上(異于端點),若a,b,c,p均為非零實數(shù),直線BP,CP分別交直線AC,AB于點E,F(xiàn).某同學(xué)已正確算得直線OE的方程為($\frac{1}$-$\frac{1}{c}$)x+($\frac{1}{p}$-$\frac{1}{a}$)y=0,則直線OF的方程為( 。
A.($\frac{1}{c}$-$\frac{1}$)x+($\frac{1}{p}$-$\frac{1}{a}$)y=0B.($\frac{1}$-$\frac{1}{c}$)x+($\frac{1}{p}$-$\frac{1}{a}$)y=0C.(-$\frac{1}$-$\frac{1}{c}$)x+($\frac{1}{p}$-$\frac{1}{a}$)y=0D.($\frac{1}$+$\frac{1}{c}$)x+($\frac{1}{p}$-$\frac{1}{a}$)y=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.已知函數(shù)f(x)=|2x-1|+|2x-3|.
(1)求不等式f(x)≤4的解集;
(2)若關(guān)于x的不等式f(x)<|a-1|的解集非空,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)x∈R,則“x=1”是“復(fù)數(shù)z=(x2-1)+(x+1)i為純虛數(shù)”的(  )
A.充分不必要條件B.充分必要條件
C.必要不充分條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.如圖,已知EB是半圓O的直徑,A是BE延長線上一點,AC切半圓O于點D,BC⊥AC于點C,DF⊥EB于點F,若AC=8,BC=6,則DF=( 。
A.3B.4C.$\frac{15}{4}$D.$\frac{7}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知f(x)=$\left\{\begin{array}{l}{{2}^{x}(x≤0)}\\{{x}^{2}-2x+1(x>0)}\end{array}\right.$在[-1,a](a>2)上最大值與最小值之差為4,則a=3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知函數(shù)f(x)是定義在R上連續(xù)的偶函數(shù),f(x)在[0,+∞)遞增且f(2)=0,則函數(shù)y=|f(1-x)|的單調(diào)遞增區(qū)間為[-1,1]和[3,+∞)..

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.設(shè)集合A={(x,y)|(x-4)2+y2=r2,r>0},B={(x,y)|x2+(y-3)2=36},若A∩B中有且只有一個元素,則r的取值集合為{1,11}.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.若某一射手射擊所得環(huán)數(shù)X的分布列為
X45678910
P0.020.040.060.090.280.290.22
則此射手“射擊一次命中環(huán)數(shù)X≥7”的概率是( 。
A.0.88B.0.12C.0.79D.0.09

查看答案和解析>>

同步練習(xí)冊答案