分析 a${\;}_{n+1}^{2}$+3an+1-2a${\;}_{n}^{2}$+3an-anan+1=0,因式分解為:(an+1-2an+3)(an+1+an)=0,由an+1+an>0,可得an+1-2an+3=0,變形即可證明.
解答 解:∵a${\;}_{n+1}^{2}$+3an+1-2a${\;}_{n}^{2}$+3an-anan+1=0,
∴(an+1-2an)(an+1+an)+3(an+1+an)=0,
化為:(an+1-2an+3)(an+1+an)=0,∵an+1+an>0,
∴an+1-2an+3=0,
化為:an+1+3=2(an+3),a1+3=4.
∴數(shù)列{an-3}是等比數(shù)列,首項為4,公比為2.
∴an+3=4×2n-1,
可得an=2n+1-3.
點評 本題考查了數(shù)列遞推關系、等比數(shù)列的通項公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | 如果a>b,那么ac>bc | B. | 如果a>b,c<d,那么a-c>b-d | ||
C. | 如果a>b,那么ac2>bc2 | D. | 如果a>b,那么an>bn(n∈N*) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -8 | B. | -2 | C. | 1.5 | D. | 7 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{\sqrt{3}-1}{2}$ | B. | $\frac{1}{2}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | 1-$\frac{\sqrt{2}}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com