3.在△ABC中,角A、B、C所對的邊分別為a、b、c,且a=5,b=8,C=60°,則$\overrightarrow{BC}$•$\overrightarrow{CA}$的值為-20.

分析 根據(jù)條件可知,$|\overrightarrow{BC}|=5$,$|\overrightarrow{CA}|=8$,$\overrightarrow{BC}$與$\overrightarrow{CA}$的夾角為120°,這樣進行向量數(shù)量積的計算便可得出$\overrightarrow{BC}•\overrightarrow{CA}$的值.

解答 解:如圖,

$\overrightarrow{BC}•\overrightarrow{CA}=|\overrightarrow{BC}||\overrightarrow{CA}|cos120°$=$5×8×(-\frac{1}{2})=-20$.
故答案為:-20.

點評 考查向量夾角的概念,以及向量數(shù)量積的計算公式.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

1.根據(jù)圖象特征分析以下函數(shù):
①f(x)=3-x              ②f(x)=x2-3x             ③f(x)=-$\frac{1}{x}$              ④f(x)=-|x|⑤y=ln(x+1)
其中在(0,+∞)上是增函數(shù)的是③⑤;(只填序號即可)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知點M(3,0),兩直線l1:2x-y-2=0與l2:x+y+3=0.
(1)過點M的直線l與l1,l2相交于P,Q兩點,且線段PQ恰好被M所平分,求直線l的方程;
(2)求l1關(guān)于l2對稱的直線l3的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

19.設(shè)函數(shù)f(x)定義在(0,+∞)上的單調(diào)函數(shù),且滿足條件f(4)=1,對任意x1,x2∈(0,+∞),有f(x1•x2)=f(x1)+f(x2).
(1)求f(1)的值;
(2)如果f(x+6)>2,求x的取值范圍;
(3)若對于任意x∈[1,4]都有f(x)≥m2+m-1恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.如圖所示,△ABC中,D為AC的中點,AB=2,BC=$\sqrt{7}$,∠A=$\frac{π}{3}$.
(1)求cos∠ABC的值;
(2)求BD的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.已知方程kx+3=log2x的根x0滿足x0∈(1,2),則k的范圍(-3,-1).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知球O是棱長為1的正方體ABCD-A1B1C1D1的內(nèi)切球,則以B1為頂點,以平面ACD1被球O所截得的圓為底面的圓錐的全面積為$\frac{2π}{3}$.(圓錐全面積S=πr(l+r),其中r為圓錐的底面半徑,l為母線長)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.把[0,1]內(nèi)的均勻隨機數(shù)分別轉(zhuǎn)化為[0,4]和[-4,1]內(nèi)的均勻隨機數(shù),需實施的變換分別為(  )
A.y=-4x,y=5x-4B.y=4x-4,y=4x+3C.y=4x,y=5x-4D.y=4x,y=4x+3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若向量$\overrightarrow a$=(1,2,0),$\overrightarrow b$=(-2,0,1),則( 。
A.cos<$\overrightarrow{a}$,$\overrightarrow b$>=120°B.$\overrightarrow a$⊥$\overrightarrow b$C.$\overrightarrow{a}$∥$\overrightarrow b$D.|$\overrightarrow a$|=|$\overrightarrow b$|

查看答案和解析>>

同步練習冊答案