分析 (Ⅰ)直線l過點M(3,4),其傾斜角為45°,參數(shù)方程為$\left\{\begin{array}{l}{x=3+\frac{\sqrt{2}}{2}t}\\{y=4+\frac{\sqrt{2}}{2}t}\end{array}\right.$,(t為參數(shù)).由極坐標與直角坐標互化公式代入化簡即可得出圓C的普通方程;
(Ⅱ)直線l的參數(shù)方程代入圓方程得${t}^{2}+5\sqrt{2}t$+9=0,利用|MA|•|MB|=|t1|•|t2|=|t1t2|即可得出.
解答 解:(Ⅰ)直線l過點M(3,4),其傾斜角為45°,參數(shù)方程為$\left\{\begin{array}{l}{x=3+\frac{\sqrt{2}}{2}t}\\{y=4+\frac{\sqrt{2}}{2}t}\end{array}\right.$,(t為參數(shù)).
圓C的極坐標方程為ρ=4sinθ,直角坐標方程為x2+y2-4y=0;
(Ⅱ)將直線的參數(shù)方程代入圓方程得:${t}^{2}+5\sqrt{2}t$+9=0,
設A、B對應的參數(shù)分別為t1、t2,則t1+t2=5$\sqrt{2}$,t1t2=9,
于是|MA|•|MB|=|t1|•|t2|=|t1t2|=9.
點評 本題考查了極坐標方程化為直角坐標方程、直線參數(shù)方程的應用,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | {x|0≤x≤3} | B. | {x|1<x<2} | C. | {x|0≤x≤1} | D. | {x|2<x≤3} |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | M∩N=M | B. | M∪N=R | C. | M∩∁RN=φ | D. | ∁RM∪N=R |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{3π}{4}$ | B. | $\frac{2π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a4=0 | B. | S4=S3 | C. | S7=0 | D. | an是遞減數(shù)列 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (0,+∞) | B. | (-1,2) | C. | (0,2) | D. | (2,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com