精英家教網 > 高中數學 > 題目詳情
6.若x3>x2>x1>0,且a=$\frac{{{{log}_2}(2{x_1}+2)}}{x_1}$,b=$\frac{{{{log}_2}(2{x_2}+2)}}{x_2}$,c=$\frac{{{{log}_2}(2{x_3}+2)}}{x_3}$,則a,b,c的大小關系為( 。
A.a<b<cB.a>b>cC.b<a<cD.c<a<b

分析 設函數f(x)=log2(2x+2),作出其圖象,數形結合能求出結果.

解答 解:∵x3>x2>x1>0,
a=$\frac{{{{log}_2}(2{x_1}+2)}}{x_1}$,b=$\frac{{{{log}_2}(2{x_2}+2)}}{x_2}$,
c=$\frac{{{{log}_2}(2{x_3}+2)}}{x_3}$,
∴設函數f(x)=log2(2x+2),
作出其圖象,由圖得,
a=KOC,b=KOB,c=KOA,
比較它們的斜率得:a<b<c.
故選:A.

點評 本題考查三個數的大小的求法,是中檔題,解題時要認真審題,注意數形結合思想的合理運用.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:選擇題

9.已知Rt△ABC的斜邊AB=2,則其內切圓的半徑r的取值范圍是( 。
A.(1,$\sqrt{2}$]B.[1,$\sqrt{2}$]C.(0,$\sqrt{2}$-1]D.[1,$\sqrt{2}$-1]

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

17.已知集合A=$\{x|{x^2}-x-2<0\},\;B=\{x|\frac{x+2}{x-2}<0\}$,則集合A、B的關系為( 。
A.A⊆BB.B⊆AC.A?BD.B?A

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

14.已知$\overrightarrow{a}$=(3,-1),$\overrightarrow$=(1,-2),若(-$\overrightarrow{a}$+$\overrightarrow$)∥($\overrightarrow{a}$+k$\overrightarrow$),則實數k的值是-1.

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

1.有2000名網購者在11月11日當天于某購物網站進行網購消費(消費金額不超過1000元),其中有女士1100名,男士900名、該購物網站為優(yōu)化營銷策略,根據性別采用分層抽樣的方法從這2000名網購者中抽取200名進行分析,如下表:(消費金額單位:元)
女士消費情況:
消費金額(0,200)[200,400)[400,600)[600,800)[800,1000]
人數10253530x
男士消費情況:
消費金額(0,200)[200,400)[400,600)[600,800)[800,1000]
人數153025y5
(1)計算x,y的值;在抽出的200名且消費金額在[800,1000](單位:元)的網購者中隨機選出兩名發(fā)放網購紅包,求選出的兩名網購者都是男士的概率;
(2)若消費金額不低于600元的網購者為“網購達人”,低于600元的網購者為“非網購達人”,根據以上統(tǒng)計數據填寫2×2列聯表,并回答能否在犯錯誤的概率不超過0.05的前提下認為“是否為‘網購達人’與性別有關?”
女士男士總計
網購達人
非網購達人
總計
附:
P(K2≥k00.100.050.0250.0100.005
k02.7063.8415.0246.6357.879
(K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d)

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

11.若xlog34=1,則4x+4-x的值為( 。
A.3B.4C.$\frac{17}{4}$D.$\frac{10}{3}$

查看答案和解析>>

科目:高中數學 來源: 題型:解答題

18.已知函數f(x)=log3(ax+b)的部分圖象如圖所示
(Ⅰ)求f(x)的解析式
(Ⅱ)求f(x)在[4,6]上的最大值和最小值.

查看答案和解析>>

科目:高中數學 來源: 題型:填空題

15.根據如圖所示的程序框圖操作,使得當成績不低于60分時,輸出“及格”,當成績低于60分時,輸出“不及格”,則框1中填是,框2中填否.

查看答案和解析>>

科目:高中數學 來源: 題型:選擇題

16.已知正項等比數列{an}滿足:a7=a6+2a5,若存在兩項am,an,使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,則$\frac{1}{m}$+$\frac{16}{n}$的最小值為(  )
A.$\frac{25}{6}$B.$\frac{21}{5}$C.$\frac{8}{3}$D.$\frac{3}{2}$

查看答案和解析>>

同步練習冊答案