18.已知函數(shù)f(x)=log3(ax+b)的部分圖象如圖所示
(Ⅰ)求f(x)的解析式
(Ⅱ)求f(x)在[4,6]上的最大值和最小值.

分析 (Ⅰ)根據(jù)對數(shù)函數(shù)的圖象過定點,建立方程求出a,b的值即可求f(x)的解析式
(Ⅱ)根據(jù)函數(shù)f(x)的解析式判斷函數(shù)的單調(diào)性即可求f(x)在[4,6]上的最大值和最小值.

解答 解:(Ⅰ)∵函數(shù)過點(2,1)和(5,2),
則$\left\{\begin{array}{l}{lo{g}_{3}(2a+b)=1}\\{lo{g}_{3}(5a+b)=2}\end{array}\right.$,則$\left\{\begin{array}{l}{2a+b=3}\\{5a+b=9}\end{array}\right.$,
得a=2,b=-1,
則f(x)的解析式f(x)=log3(2x-1).
(Ⅱ)∵f(x)=log3(2x-1)在[4,6]上為增函數(shù),
∴當x=4時,函數(shù)取得最小值,f(4)=log3(2×4-1)=log37,
當x=6時,函數(shù)取得最大值,f(6)=log3(2×6-1)=log311,
即f(x)在[4,6]上的最大值是log311,最小值log37.

點評 本題主要考查函數(shù)解析式的求解以及函數(shù)最值的求解,利用待定系數(shù)法求出a,b的值是解決本題的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

8.已知函數(shù)f(x)=xa的圖象過點(4,2),an=$\frac{1}{f(n+1)+f(n)}(n∈{N_+})$,數(shù)列{an}的前n項和為sn,則s2015為( 。
A.$\sqrt{2014}$-1B.$\sqrt{2015}$-1C.$\sqrt{2016}$-1D.$\sqrt{2016}$+1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.若實數(shù)a,b,c同時滿足以下三個條件:
①(b+$\frac{1}{{3}^{a}}$-$\frac{1}{3}$)2+[c-m(a2+a-m2-m)]2=0;
②對任意的a∈R,b<0或c<0;
③存在a∈(-∞,-1),使得bc<0.
則實數(shù)m的取值范圍為(  )
A.(-2,0)B.(-2,-1)C.(-3,-2)D.(-4,-2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.若x3>x2>x1>0,且a=$\frac{{{{log}_2}(2{x_1}+2)}}{x_1}$,b=$\frac{{{{log}_2}(2{x_2}+2)}}{x_2}$,c=$\frac{{{{log}_2}(2{x_3}+2)}}{x_3}$,則a,b,c的大小關(guān)系為( 。
A.a<b<cB.a>b>cC.b<a<cD.c<a<b

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.若一系列函數(shù)的解析式和值域相同,但其定義域不同,則稱這些函數(shù)為“同族函數(shù)”,例如函數(shù)y=x2,x∈[1,2]與函數(shù)y=x2,x∈[-2,-1]即為“同族函數(shù)”.下面函數(shù)的解析式也能夠被用來構(gòu)造“同族函數(shù)”的是(  )
A.y=xB.y=|x-3|C.y=2xD.y=log${\;}_{\frac{1}{2}}$x

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

3.設(shè)$\overrightarrow{a}$=(2,3),$\overrightarrow$=(1,-1),若$\overrightarrow$•($\overrightarrow{a}$+m$\overrightarrow$)=0,則實數(shù)m的值為$\frac{1}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.函數(shù)y=sin(πx+$\frac{π}{3}$)的最小正周期為( 。
A.2B.πC.$\frac{π}{2}$D.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知函數(shù)f(x)是定義在R上的函數(shù)且滿足f(x+$\frac{3}{2}$)=-f(x),若x∈(0,3)時,f(x)=log2(3x+1),則f(2015)=(  )
A.4B.-2C.2D.log27

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

8.一個棱長為$\root{3}{6}$的正方體被一個平面截去一部分后,剩余部分的三視圖如圖所示,則此剩余部分的體積為5.

查看答案和解析>>

同步練習冊答案