9.若實(shí)數(shù)a,b,c同時(shí)滿足以下三個(gè)條件:
①(b+$\frac{1}{{3}^{a}}$-$\frac{1}{3}$)2+[c-m(a2+a-m2-m)]2=0;
②對(duì)任意的a∈R,b<0或c<0;
③存在a∈(-∞,-1),使得bc<0.
則實(shí)數(shù)m的取值范圍為( 。
A.(-2,0)B.(-2,-1)C.(-3,-2)D.(-4,-2)

分析 ①根據(jù)平方的性質(zhì)得到b+$\frac{1}{{3}^{a}}$-$\frac{1}{3}$=0且c-m(a2+a-m2-m)=0;②等價(jià)于對(duì)于任意a≥1,c<0,③等價(jià)于存在a<-1,使c>0,進(jìn)而可求實(shí)數(shù)m的取值范圍.

解答 解:①由①(b+$\frac{1}{{3}^{a}}$-$\frac{1}{3}$)2+[c-m(a2+a-m2-m)]2=0;
得b+$\frac{1}{{3}^{a}}$-$\frac{1}{3}$=0且c-m(a2+a-m2-m)=0;
即b=-$\frac{1}{{3}^{a}}$+$\frac{1}{3}$,c=m(a2+a-m2-m),
當(dāng)a<1時(shí),b=-$\frac{1}{{3}^{a}}$+$\frac{1}{3}$<0
當(dāng)a≥1時(shí),b≥0,
所以②等價(jià)于對(duì)于任意a≥1,c<0,③等價(jià)于存在a<-1,使c>0,
c=m(a2+a-m2-m)=m(a+$\frac{1}{2}$)2-$\frac{1}{4}$m-m(m2-m),
當(dāng)a=1時(shí)c<0,
即m<0,且m+m-m2 (m+1)<0,
也即-2<m<0;
當(dāng)存在a<-1,使c>0,時(shí),
由以上知m<0,此時(shí)當(dāng)a=-1時(shí)c>0,
即m-m-m2 (m+1)>0,得m<-1;
綜上所述得-2<m<-1.
故選:B

點(diǎn)評(píng) 本題考查求實(shí)數(shù)m的取值范圍,考查進(jìn)行簡(jiǎn)單的合情推理,根據(jù)平方的性質(zhì)以及不等式的性質(zhì)進(jìn)行轉(zhuǎn)化是解決本題的關(guān)鍵.綜合性較強(qiáng),難度較大.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.5名戰(zhàn)士站成一排,其中甲不站在最左邊的不同站法的種數(shù)為96.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.在數(shù)列{an}中,an=n2cosnπ(n∈N*),則a1+a2+…+a100=5050.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知集合A=$\{x|{x^2}-x-2<0\},\;B=\{x|\frac{x+2}{x-2}<0\}$,則集合A、B的關(guān)系為( 。
A.A⊆BB.B⊆AC.A?BD.B?A

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知函數(shù)f(x)=cos$\frac{x}{4}$•cos($\frac{π}{2}$-$\frac{x}{4}$)•cos(π-$\frac{x}{2}$),將函數(shù)f(x)在(0,+∞)的所有極值點(diǎn)的橫坐標(biāo)從小到大排成一數(shù)列,記為{an}.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)令bn=$\frac{1}{{{a_n}•{a_{n+1}}}}$,求數(shù)列{bn}前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知$\overrightarrow{a}$=(3,-1),$\overrightarrow$=(1,-2),若(-$\overrightarrow{a}$+$\overrightarrow$)∥($\overrightarrow{a}$+k$\overrightarrow$),則實(shí)數(shù)k的值是-1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.有2000名網(wǎng)購(gòu)者在11月11日當(dāng)天于某購(gòu)物網(wǎng)站進(jìn)行網(wǎng)購(gòu)消費(fèi)(消費(fèi)金額不超過1000元),其中有女士1100名,男士900名、該購(gòu)物網(wǎng)站為優(yōu)化營(yíng)銷策略,根據(jù)性別采用分層抽樣的方法從這2000名網(wǎng)購(gòu)者中抽取200名進(jìn)行分析,如下表:(消費(fèi)金額單位:元)
女士消費(fèi)情況:
消費(fèi)金額(0,200)[200,400)[400,600)[600,800)[800,1000]
人數(shù)10253530x
男士消費(fèi)情況:
消費(fèi)金額(0,200)[200,400)[400,600)[600,800)[800,1000]
人數(shù)153025y5
(1)計(jì)算x,y的值;在抽出的200名且消費(fèi)金額在[800,1000](單位:元)的網(wǎng)購(gòu)者中隨機(jī)選出兩名發(fā)放網(wǎng)購(gòu)紅包,求選出的兩名網(wǎng)購(gòu)者都是男士的概率;
(2)若消費(fèi)金額不低于600元的網(wǎng)購(gòu)者為“網(wǎng)購(gòu)達(dá)人”,低于600元的網(wǎng)購(gòu)者為“非網(wǎng)購(gòu)達(dá)人”,根據(jù)以上統(tǒng)計(jì)數(shù)據(jù)填寫2×2列聯(lián)表,并回答能否在犯錯(cuò)誤的概率不超過0.05的前提下認(rèn)為“是否為‘網(wǎng)購(gòu)達(dá)人’與性別有關(guān)?”
女士男士總計(jì)
網(wǎng)購(gòu)達(dá)人
非網(wǎng)購(gòu)達(dá)人
總計(jì)
附:
P(K2≥k00.100.050.0250.0100.005
k02.7063.8415.0246.6357.879
(K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

18.已知函數(shù)f(x)=log3(ax+b)的部分圖象如圖所示
(Ⅰ)求f(x)的解析式
(Ⅱ)求f(x)在[4,6]上的最大值和最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.如圖,棱長(zhǎng)為1的正方體ABCD-A1B1C1D1中,E是AA1的中點(diǎn).
(1)求證:A1C∥平面BDE;
(2)求二面角E-BD-A的正切值.

查看答案和解析>>

同步練習(xí)冊(cè)答案