分析 設(shè)已知圓的圓心($\frac{1}{2}$,-1)關(guān)于直線(xiàn)x-y+1=0對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為(m,n),利用垂直、以及中點(diǎn)在軸上這2個(gè)條件,求得(m,n)的值,可得對(duì)稱(chēng)圓的方程.
解答 解:設(shè)圓${(x-\frac{1}{2})^2}+{(y+1)^2}=\frac{5}{4}$ 的圓心($\frac{1}{2}$,-1)關(guān)于直線(xiàn)x-y+1=0對(duì)稱(chēng)的點(diǎn)的坐標(biāo)為(m,n),
由$\left\{\begin{array}{l}{\frac{n+1}{m-\frac{1}{2}}•1=-1}\\{\frac{m+\frac{1}{2}}{2}-\frac{n-1}{2}+1=0}\end{array}\right.$,求得$\left\{\begin{array}{l}{m=-2}\\{n=\frac{3}{2}}\end{array}\right.$,可得對(duì)稱(chēng)圓的圓心為(-2,$\frac{3}{2}$),
故對(duì)稱(chēng)圓的方程為(x+2)2+${(y-\frac{3}{2})}^{2}$=$\frac{5}{4}$.
點(diǎn)評(píng) 本題主要考查求一個(gè)點(diǎn)關(guān)于某直線(xiàn)的對(duì)稱(chēng)點(diǎn)的坐標(biāo)的方法,利用了垂直、以及中點(diǎn)在軸上這2個(gè)條件,屬于基礎(chǔ)題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {-2,-8} | B. | {-8,2} | C. | {4,6} | D. | {-6,4} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
日需求量n(瓶) | 17 | 18 | 19 | 20 | 21 | 22 | 23 |
頻數(shù) | 5 | 5 | 8 | 12 | 10 | 6 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | $2\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com