【題目】已知、是橢圓上不同的兩點,的中點坐標(biāo)為.
(1)證明:直線經(jīng)過橢圓的右焦點.
(2)設(shè)直線不經(jīng)過點且與橢圓相交于,兩點,若直線與直線的斜率的和為1,試判斷直線是否經(jīng)過定點,若經(jīng)過定點,請求出該定點;若不經(jīng)過定點,請給出理由.
【答案】(1)證明見解析;(2)過定點;.
【解析】
(1)根據(jù)已知用點差法求出直線的斜率,即可證明結(jié)論;
(2)先考慮直線斜率存在情況,設(shè)直線的方程為,直線要過定點,只需求出為定值或確定關(guān)系,聯(lián)立直線方程與橢圓方程,根據(jù)根與系數(shù)關(guān)系以及直線與直線的斜率的和為1,可得關(guān)系,得出定點,再求出直線斜率不存在時方程即可.
(1)由題知,,設(shè),,
的中點坐標(biāo)為,所以,
由,兩式相減,
得,
又因為,所以直線經(jīng)過橢圓的右焦點.
(2)當(dāng)直線斜率存在時,設(shè)直線的方程為,
由得,
設(shè),,
所以,,
又因為,所以,
即,
所以,化簡得,
所以,又因為,所以,
所以直線的方程為,
經(jīng)檢驗,符合題意,所以直線過定點,
又當(dāng)直線斜率不存在時,直線的方程為,
,又因為,
解得,也過點.
綜上知,直線過定點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】據(jù)《人民網(wǎng)》報道,“美國國家航空航天局(NASA)發(fā)文稱,相比20年前世界變得更綠色了,衛(wèi)星資料顯示中國和印度的行動主導(dǎo)了地球變綠.”據(jù)統(tǒng)計,中國新增綠化面積的420/0來自于植樹造林,下表是中國十個地區(qū)在2017年植樹造林的相關(guān)數(shù)據(jù).(造林總面積為人工造林、飛播造林、新封山育林、退化林修復(fù)、人工更新的面積之和)單位:公頃
按造林方式分 | ||||||
地區(qū) | 造林總面積 | 人工造林 | 飛播造林 | 新封山育林 | 退化林修復(fù) | 人工更新 |
內(nèi)蒙 | 618484 | 311052 | 74094 | 136006 | 90382 | 6950 |
河北 | 583361 | 345625 | 33333 | 135107 | 65653 | 3643 |
河南 | 149002 | 97647 | 13429 | 22417 | 15376 | 133 |
重慶 | 226333 | 100600 | 62400 | 63333 | ||
陜西 | 297642 | 184108 | 33602 | 63865 | 16067 | |
甘肅 | 325580 | 260144 | 57438 | 7998 | ||
新疆 | 263903 | 118105 | 6264 | 126647 | 10796 | 2091 |
青海 | 178414 | 16051 | 159734 | 2629 | ||
寧夏 | 91531 | 58960 | 22938 | 8298 | 1335 | |
北京 | 19064 | 10012 | 4000 | 3999 | 1053 |
(Ⅰ)請根據(jù)上述數(shù)據(jù),分別寫出在這十個地區(qū)中人工造林面積與造林總面積的比值最大和最小的地區(qū);
(Ⅱ)在這十個地區(qū)中,任選一個地區(qū),求該地區(qū)人工造林面積與造林總面積的比值不足50%的概率是多少?
(Ⅲ)從上表新封山育林面積超過十萬公頃的地區(qū)中,任選兩個地區(qū),求至少有一個地區(qū)退化林修復(fù)面積超過五萬公頃的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】下表是某電器銷售公司2018年度各類電器營業(yè)收入占比和凈利潤占比統(tǒng)計表:
空調(diào)類 | 冰箱類 | 小家電類 | 其它類 | |
營業(yè)收入占比 | 90.10% | 4.98% | 3.82% | 1.10% |
凈利潤占比 | 95.80% | 3.82% | 0.86% |
則下列判斷中不正確的是( )
A.該公司2018年度冰箱類電器銷售虧損
B.該公司2018年度小家電類電器營業(yè)收入和凈利潤相同
C.該公司2018年度凈利潤主要由空調(diào)類電器銷售提供
D.剔除冰箱類銷售數(shù)據(jù)后,該公司2018年度空調(diào)類電器銷售凈利潤占比將會降低
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知:橢圓的焦距為2,且經(jīng)過點,是橢圓上異于的兩個動點.
(1)求橢圓的方程;
(2)若,求證:直線過定點,并求出該定點坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩工人在同樣的條件下生產(chǎn),日產(chǎn)量相等,每天出廢品的情況如下表:
則下列結(jié)論中正確的是 ( )
A. 甲生產(chǎn)的產(chǎn)品質(zhì)量比乙生產(chǎn)的產(chǎn)品質(zhì)量好一些
B. 乙生產(chǎn)的產(chǎn)品質(zhì)量比甲生產(chǎn)的產(chǎn)品質(zhì)量好一些
C. 兩人生產(chǎn)的產(chǎn)品質(zhì)量一樣好
D. 無法判斷誰生產(chǎn)的產(chǎn)品質(zhì)量好一些
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),,其中.
(1)求函數(shù)的單調(diào)區(qū)間;
(2)若對任意,任意,不等式恒成立時最大的記為,當(dāng)時,的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,四棱錐P一ABCD中,AB=AD=2BC=2,BC∥AD,AB⊥AD,△PBD為正三角形.且PA=2.
(1)證明:平面PAB⊥平面PBC;
(2)若點P到底面ABCD的距離為2,E是線段PD上一點,且PB∥平面ACE,求四面體A-CDE的體積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某圓柱的高為2,底面周長為16,其三視圖如圖所示,圓柱表面上的點在正視圖上的對應(yīng)點為,圓柱表面上的點在左視圖上的對應(yīng)點為,則在此圓柱側(cè)面上,從到的路徑中,最短路徑的長度為( )
A. B. C. D. 2
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,已知多面體PABCDE的底面ABCD是邊長為2的菱形,底面ABCD,,且.
(1)證明:平面平面;
(2)若,求多面體的體積.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com