15.若冪函數(shù)f(x)=(m2-m-1)xm-1在區(qū)間(0,+∞)上是增函數(shù),則實(shí)數(shù)m的值為2.

分析 利用冪函數(shù)的定義、單調(diào)性即可得出.

解答 解:由冪函數(shù)f(x)=(m2-m-1)xm-1,可得m2-m-1=1,解得m=2或-1.
又冪函數(shù)y=xm-1在區(qū)間(0,+∞)上是增函數(shù),∴m=2.
故答案為:2.

點(diǎn)評(píng) 本題考查了冪函數(shù)的定義、單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.某超市從2017年1月甲、乙兩種酸奶的日銷售量(單位:箱)的數(shù)據(jù)中分別隨機(jī)抽取100個(gè),并按[0,10],(10,20],(20,30],(30,40],(40,50]分組,得到頻率分布直方圖如下:

假設(shè)甲、乙兩種酸奶獨(dú)立銷售且日銷售量相互獨(dú)立.
(Ⅰ)寫出頻率分布直方圖(甲)中的a值;記甲種酸奶與乙種酸奶日銷售量(單位:箱)的方差分別為S12與S22,試比較S12與S22的大。ㄖ恍鑼懗鼋Y(jié)論);
(Ⅱ)估計(jì)在未來的某一天里,甲、乙兩種酸奶的銷售量恰有一個(gè)高于20箱且另一個(gè)不高于20箱的概率;
(Ⅲ)設(shè)X表示在未來3天內(nèi)甲種酸奶的日銷售量不高于20箱的天數(shù),以日銷售量落入各組的頻率作為概率,求X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.△ABC中,∠C=90°,且CA=3,點(diǎn)M滿足$\overrightarrow{BM}$=2$\overrightarrow{MA}$,則$\overrightarrow{CM}$•$\overrightarrow{CA}$的值為(  )
A.3B.6C.9D.不確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=$\left\{\begin{array}{l}{-x+m,x<0}\\{{x}^{2}-1,x≥0}\end{array}\right.$其中m>0,若函數(shù)y=f(f(x))-1有3個(gè)不同的零點(diǎn),則m的取值范圍是(0,$\sqrt{2}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.函數(shù)$f(x)=\frac{3}{x-4}+\sqrt{{2^x}-4}$的定義域是(  )
A.[2,4)B.[2,4)∪(4,+∞)C.(2,4)∪(4,+∞)D.[2,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某超市經(jīng)營(yíng)一批產(chǎn)品,在市場(chǎng)銷售中發(fā)現(xiàn)此產(chǎn)品在30天內(nèi)的日銷售量P(件)與日期t(1≤t≤30,t∈N+))之間滿足P=kt+b,已知第5日的銷售量為55件,第10日的銷售量為50件.
(1)求第20日的銷售量;                
(2)若銷售單價(jià)Q(元/件)與t的關(guān)系式為$Q=\left\{\begin{array}{l}t+20,1≤t<25\\ 80-t,25≤t≤30\end{array}\right.(t∈{N^+})$,求日銷售額y的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.函數(shù)f(x)=$\sqrt{1-{3}^{x}}$+$\frac{1}{{x}^{2}}$的定義域?yàn)椋?∞,0).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.記[x]為不超過實(shí)數(shù)x的最大整數(shù),例如:[2]=2,[1.5]=1,[-0.3]=-1,設(shè)a為正整數(shù),數(shù)列{xn}滿足:x1=a,${x_{n+1}}=[\frac{{{x_n}+[\frac{a}{x_n}]}}{2}](n∈{N^*})$,現(xiàn)有下列命題:
①當(dāng)a=5時(shí),數(shù)列{xn}的前3項(xiàng)依次為5,3,2;
②對(duì)數(shù)列{xn}都存在正整數(shù)k,當(dāng)n≥k時(shí),總有xn=xk
③當(dāng)n≥1時(shí),${x_n}>\sqrt{a}-1$;
④對(duì)某個(gè)正整數(shù)k,若xk+1≥xk,則${x_n}=[\sqrt{a}]$;
其中的真命題個(gè)數(shù)為( 。
A.4B.3C.2D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.如果實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{2x+y-4≤0}\\{x-y-1≤0}\\{x≥1}\end{array}\right.$,則z=3x+2y+$\frac{y}{x}$的最大值為(  )
A.7B.8C.9D.11

查看答案和解析>>

同步練習(xí)冊(cè)答案