19.已知冪函數(shù)y=xa的圖象過點(diǎn)(3,9),則${(\frac{a}{x}-\sqrt{x})}^{8}$的展開式中x的系數(shù)為112.

分析 直接利用冪函數(shù)求出a的值,然后求出二項(xiàng)式展開式中所求項(xiàng)的系數(shù).

解答 解:冪函數(shù)y=xa的圖象過點(diǎn)(3,9),
∴3a=9,
∴a=2,
∴${(\frac{a}{x}-\sqrt{x})}^{8}$=($\frac{2}{x}$-$\sqrt{x}$)8的通項(xiàng)為Tr+1=(-1)rC8r28-rx${\;}^{\frac{3}{2}r-8}$,
令$\frac{3}{2}$r-8=1,
解得r=6,
展開式中x的系數(shù)為(-1)6C8628-6=112,
故答案為:112.

點(diǎn)評(píng) 本題考查二項(xiàng)式定理的應(yīng)用,冪函數(shù)的應(yīng)用,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=|x-2|-4,g(x)=|x+1|-3.
(Ⅰ)若f(x)≤1,求實(shí)數(shù)x的取值范圍;
(Ⅱ)若不等式f(x)-g(x)≥m-1有解,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的長(zhǎng)軸長(zhǎng)為4,焦距為$2\sqrt{3}$,以A為圓心的圓(x-2)2+y2=r2(r>0)與橢圓相交于B、C兩點(diǎn).
(Ⅰ)求橢圓的標(biāo)準(zhǔn)方程;
(Ⅱ)求$\overrightarrow{AB}•\overrightarrow{AC}$的取值范圍;
(Ⅲ)設(shè)P是橢圓C長(zhǎng)異于B、C的任一點(diǎn),直線PB、PC與x軸分別交于M、N,
求S△POM•S△PON的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.求下列各式的值.
(Ⅰ)9${\;}^{\frac{1}{2}}$+($\frac{1}{2}$)-1-lg100;
(Ⅱ)(2a${\;}^{\frac{2}{3}}$b${\;}^{\frac{1}{2}}$)(-6a${\;}^{\frac{1}{2}}$b${\;}^{\frac{1}{3}}$)÷(-3a${\;}^{\frac{1}{6}}$b${\;}^{\frac{5}{6}}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知命題p:若x>10,則x>1,那么p的逆否命題為( 。
A.若x>1,則x>10B.若x>10,則x≤1C.若x≤10,則x≤1D.若x≤1,則x≤10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.已知等差數(shù)列{an}的前n項(xiàng)和為Sn,公差d≠0.且a3+S5=42,a1,a4,a13成等比數(shù)列.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)數(shù)列bn=$\frac{1}{{a}_{n-1}{a}_{n}}$,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某人欲投資A,B兩支股票時(shí),不僅要考慮可能獲得的盈利,而且要考慮可能出現(xiàn)的虧損,根據(jù)預(yù)測(cè),A,B兩支股票可能的最大盈利率分別為40%和80%,可能的最大虧損率分別為10%和30%.若投資金額不超過15萬(wàn)元.根據(jù)投資意向,A股的投資額不大于B股投資額的3倍,且確?赡艿馁Y金虧損不超過2.7萬(wàn)元,設(shè)該人分別用x萬(wàn)元,y萬(wàn)元投資A,B兩支股票.
(Ⅰ)用x,y列出滿足投資條件的數(shù)學(xué)關(guān)系式,并畫出相應(yīng)的平面區(qū)域;
(Ⅱ)問該人對(duì)A,B兩支股票各投資多少萬(wàn)元,才能使可能的盈利最大?并求出此最大利潤(rùn).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)=ax3+(3-a)x在[-1,1]上的最大值為3,則實(shí)數(shù)a的取值范圍是( 。
A.[-$\frac{3}{2}$,3]B.[-$\frac{3}{2}$,12]C.[-3,3]D.[-3,12]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知全集U={x|x=2n,n∈Z},集合A={-2,0,2,4},B={-2,0,4,6,8},則∁UA)∩B=( 。
A.{2,8}B.{6,8}C.{2,4,6}D.{2,4,8}

查看答案和解析>>

同步練習(xí)冊(cè)答案