A. | (-∞,ln2-1) | B. | (-∞,ln2-1] | C. | (1-ln2,+∞) | D. | [1-ln2,+∞) |
分析 由題意,函數(shù)f(x)在[a,b]上的值域是[$\frac{a}{2}$,$\frac{2}$],且是增函數(shù);可以轉(zhuǎn)化為方程lnx-$\frac{x}{2}$+t=0有兩個不等的實根,且兩根都大于0的問題,從而求出t的范圍.
解答 解:∵函數(shù)f(x)=lnx+t為“倍縮函數(shù)”,
且滿足存在[a,b]⊆D,使f(x)在[a,b]上的值域是[$\frac{a}{2}$,$\frac{2}$],
∴f(x)在[a,b]上是增函數(shù);
∴$\left\{\begin{array}{l}{lna+t=\frac{a}{2}}\\{lnb+t=\frac{2}}\end{array}\right.$,
即$lnx-\frac{x}{2}+t=0$在(0,+∞)上有兩根,
即y=t和g(x)=$\frac{x}{2}$-lnx在(0,+∞)有2個交點,
g′(x)=$\frac{1}{2}$-$\frac{1}{x}$=$\frac{x-2}{2x}$,
令g′(x)>0,解得:x>2,
令g′(x)<0,解得:0<x<2,
故g(x)在(0,2)遞減,在(2,+∞)遞增,
故g(x)≥g(2)=1-ln2,
故t>1-ln2,
故選C:.
點評 本題考查了函數(shù)的值域問題,解題時應構(gòu)造函數(shù),轉(zhuǎn)化為兩函數(shù)有不同二交點,利用方程解決,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 1 | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2+i | B. | $\frac{2-i}{5}$ | C. | $\frac{2-i}{3}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{11\sqrt{3}}{3}$ | B. | $\frac{15\sqrt{3}}{4}$ | C. | $\frac{11\sqrt{3}}{4}$ | D. | 5$\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | [0,1] | B. | [0,$\sqrt{2}$] | C. | [0,2] | D. | [1,$\sqrt{2}$] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 2$\sqrt{5}$ | B. | $\sqrt{5}$ | C. | 3$\sqrt{5}$ | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | $\frac{3}{2}$ | C. | 3 | D. | 6 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com