10.已知正三棱錐P-ABC的外接球的球心O滿足$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=0,則二面角A-PB-C的正弦值為( 。
A.$\frac{1}{6}$B.$\frac{\sqrt{2}}{8}$C.$\frac{2\sqrt{6}}{5}$D.$\frac{\sqrt{6}}{3}$

分析 推導出O是△ABC的外心.設△ABC的邊長為a,則此三棱錐的高PO=OB=$\frac{\sqrt{3}}{3}$a,側棱長PA=PB=PC=$\frac{\sqrt{6}}{3}$a,側面的斜高PD=$\sqrt{\frac{5}{12}}a$,取AC中點F,連結BF,PF,作CE⊥PB,交PB于E,連結AE,則∠AEC是二面角A-PB-C的平面角,由此能求出二面角A-PB-C的正弦值.

解答 解:∵正三棱錐P-ABC的外接球的球心O滿足$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OC}$=$\overrightarrow{0}$,
∴O是△ABC的外心.
設△ABC的邊長為a,則此三棱錐的高PO=OB=$\frac{\sqrt{3}}{3}$a,
∴側棱長PA=PB=PC=$\frac{\sqrt{6}}{3}$a,
側面的斜高PD=$\sqrt{P{B}^{2}-(\frac{BC}{2})^{2}}$=$\sqrt{\frac{5}{12}}a$,
取AC中點F,連結BF,PF,則BF⊥AC,PF⊥AC,
∵BF∩AF=F,∴AC⊥平面PBF,∵PB?平面PBF,∴AC⊥PB,
作CE⊥PB,交PB于E,連結AE,∵AC∩CE=C,∴PB⊥平面ACE,
∵AE?平面ACE,∴PB⊥AE,
∴∠AEC是二面角A-PB-C的平面角,
在△PBC中,由PB•CE=PD•BC,得CE=$\sqrt{\frac{5}{8}}$a,
∴cos∠AEC=$\frac{A{E}^{2}+C{E}^{2}-A{C}^{2}}{2•AE•CE}$=$\frac{1}{5}$,∴sin$∠AEC=\frac{2\sqrt{6}}{5}$,
∴二面角A-PB-C的正弦值為:$\frac{2\sqrt{6}}{5}$.
故選:C.

點評 本題考查二面角的正弦值的求法,是中檔題,解題時要認真審題,注意合理地轉化空間問題為平面問題,注意空間思維能力的培養(yǎng).

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.斜率為k(k>0)的直線經過拋物線y2=2px(p>0)的焦點,與拋物線交于A、B兩點,與拋物線的準線交于C點,當B為AC中點時,k的值為( 。
A.$\frac{\sqrt{2}}{4}$B.$\sqrt{2}$C.2$\sqrt{2}$D.3$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.設集合A={x|$\frac{x+1}{1-x}$>0},B={x|x+2≥0},則A∩B=( 。
A.{x|-1<x<1}B.{x|x≥-2}C.{x|-2≤x<1}D.{x|-1<x≤2}

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.已知橢圓E的一個頂點為A(0,-1),焦點在x軸上,若橢圓右焦點到直線x-y+2$\sqrt{2}$=0的距離為3
(Ⅰ)求橢圓E的方程;
(Ⅱ)設直線l:y=kx+m(k≠0)與該橢圓交于不同的兩點B,C,若坐標原點O到直線l的距離為$\frac{\sqrt{3}}{2}$,求△BOC面積的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知橢圓 C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1( a>b>0)經過點 (1,$\frac{{\sqrt{3}}}{2}$),離心率為$\frac{{\sqrt{3}}}{2}$,點 A 為橢圓 C 的右頂點,直線 l 與橢圓相交于不同于點 A 的兩個點P (x1,y1),Q (x2,y2).
(Ⅰ)求橢圓 C 的標準方程;
(Ⅱ)當 $\overrightarrow{AP}$?$\overrightarrow{AQ}$=0 時,求△OPQ 面積的最大值;
(Ⅲ)若直線 l 的斜率為 2,求證:△APQ 的外接圓恒過一個異于點 A 的定點.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

15.已知拋物線C:y2=4x的焦點F,直線MN過焦點F且與拋物線C交于M,N兩點,D為線段MF上一點,且|MD|=2|NF|,若|DF|=1,則|MF|=2+$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,在圓柱OO1中,矩形ABB1A1是過OO1的截面CC1是圓柱OO1的母線,AB=2,AA1=3,∠CAB=$\frac{π}{3}$.
(1)證明:AC1∥平面COB1;
(2)在圓O所在的平面上,點C關于直線AB的對稱點為D,求二面角D-B1C-B的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若x,y滿足約束條件$\left\{\begin{array}{l}{x+y>1}\\{x-y≥-1}\\{2x-y≤2}\end{array}\right.$,且目標函數(shù)z=ax+2y僅在點(1,0)處取得最小值,則a的取值范圍是(  )
A.(-1,2)B.(-4,2)C.(-4,0)D.(-4,2)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

20.已知雙曲線$\frac{x^2}{a^2}-{y^2}=1(a>0)$的一條漸近線方程為y+2x=0,則a=$\frac{1}{2}$.

查看答案和解析>>

同步練習冊答案