已知數(shù)列{an}的前n項(xiàng)和為,,滿足
(1)求的值;
(2)猜想的表達(dá)式.

(1),,;(2)

解析試題分析:(1)由,得,可求,又,可求,,可求;(2)將三數(shù)的分母都轉(zhuǎn)化為2的乘方形式,可猜想出的表達(dá)式.
解:(1)因?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/f9/6/spzdg.png" style="vertical-align:middle;" />,且,所以,           1分
解得,                                                                  2分
,                                                 3分
解得,                                                                   4分
,                                        5分
所以有,                                                                  6分
(2)由(1)知=,,            10分
猜想).                                                    12分
考點(diǎn):數(shù)列的通項(xiàng)公式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

已知數(shù)列的前n項(xiàng)和為,且點(diǎn)在直線上,則數(shù)列的通項(xiàng)公式為     。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列的前項(xiàng)和記為,已知
(Ⅰ)求,的值,猜想的表達(dá)式;
(Ⅱ)請(qǐng)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)數(shù)列{an}的前n項(xiàng)和Sn滿足=3n-2.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn,Tn是數(shù)列{bn}的前n項(xiàng)和,求使得Tn<對(duì)所有n∈N*都成立的最小正整數(shù)m.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給定數(shù)列
(1)判斷是否為有理數(shù),證明你的結(jié)論;
(2)是否存在常數(shù).使對(duì)都成立? 若存在,找出的一個(gè)值, 并加以證明; 若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知實(shí)數(shù),且按某種順序排列成等差數(shù)列.
(1)求實(shí)數(shù)的值;
(2)若等差數(shù)列的首項(xiàng)和公差都為,等比數(shù)列的首項(xiàng)和公比都為,數(shù)列的前項(xiàng)和分別為,且,求滿足條件的自然數(shù)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè)不等式組所表示的平面區(qū)域?yàn)?img src="http://thumb.zyjl.cn/pic5/tikupic/06/5/i3gfi.png" style="vertical-align:middle;" />,記內(nèi)的格點(diǎn)(格點(diǎn)即橫坐標(biāo)和縱坐標(biāo)均為整數(shù)的點(diǎn))個(gè)數(shù)為
(1)求的值及的表達(dá)式;
(2)設(shè)為數(shù)列的前項(xiàng)的和,其中,問是否存在正整數(shù),使成立?若存在,求出正整數(shù);若不存在,說明理由

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知a,b是不相等的正數(shù),在a,b之間分別插入m個(gè)正數(shù)a1,a2, ,am和正數(shù)b1,b2, ,
bm,使a,a1,a2, ,am,b是等差數(shù)列,a,b1,b2, ,bm,b是等比數(shù)列.
(1)若m=5,,求的值;
(2)若b=λa(λ∈N*,λ≥2),如果存在n (n∈N*,6≤n≤m)使得an-5=bn,求λ的最小值及此時(shí)m的值;
(3)求證:an>bn(n∈N*,n≤m).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

數(shù)列{an}(n∈N)中,a1=0,當(dāng)3an<n2時(shí),an+1=n2,當(dāng)3an>n2時(shí),an+1=3an.求a2,a3,a4,a5,猜測(cè)數(shù)列的通項(xiàng)an并證明你的結(jié)論.

查看答案和解析>>

同步練習(xí)冊(cè)答案