【題目】設(shè)函數(shù)

1)討論的導(dǎo)函數(shù)零點的個數(shù);

2)若對任意的,成立,求的取值范圍.

【答案】1)答案不唯一,見解析 2

【解析】

1)先對函數(shù)求導(dǎo),結(jié)合為偶函數(shù),問題可轉(zhuǎn)化為先研究,結(jié)合導(dǎo)數(shù)與單調(diào)性的關(guān)系及函數(shù)的零點判定定理可求,

2)結(jié)合導(dǎo)數(shù)先判斷函數(shù)的單調(diào)性,結(jié)合零點判定定理可求.

1,

,,為偶函數(shù),先研究,

,

為遞增函數(shù),

,即為單調(diào)遞增函數(shù),

當(dāng),即,沒有零點,

當(dāng),即,1個零點,

當(dāng),即,

當(dāng),

當(dāng)1個零點,

為偶函數(shù),在也有有1個零點.

綜上:,沒有零點;,1個零點;,2個零點.

2,

①當(dāng)時,由(1)知,為單調(diào)遞增函數(shù),,

②當(dāng)時,,

由零點存在性定理知使得,

且在,即單調(diào)遞減,與題設(shè)不符.

綜上可知,時,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),,,其中.

1)求函數(shù)的單調(diào)區(qū)間;

2)若對任意,總存在,使得成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】據(jù)環(huán)保部門測定,某處的污染指數(shù)與附近污染源的強(qiáng)度成正比,與到污染源距離的平方成反比,比例常數(shù)為kk>0).現(xiàn)已知相距18kmA,B兩家化工廠(污染源)的污染強(qiáng)度分別為a,b,它們連線上任意一點C處的污染指數(shù)y等于兩化工廠對該處的污染指數(shù)之和.設(shè)AC=xkm.

1)試將y表示為x的函數(shù);

2)若a=1,且x=6時,y取得最小值,試求b的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱柱中,平面,點的中點,,.

1)求證:平面平面;

2)求點到平面的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某農(nóng)科所對冬季晝夜溫差(最高溫度與最低溫度的差)大小與某反季節(jié)大豆新品種一天內(nèi)發(fā)芽數(shù)之間的關(guān)系進(jìn)行了分析研究,他們分別記錄了121日至126日每天晝夜最高、最低的溫度(如圖甲),以及實驗室每天每100顆種子中的發(fā)芽數(shù)情況(如圖乙),得到如下資料:

最高溫度最低溫度

1)請畫出發(fā)芽數(shù)y與溫差x的散點圖;

2)若建立發(fā)芽數(shù)y與溫差x之間的線性回歸模型,請用相關(guān)系數(shù)說明建立模型的合理性;

3)①求出發(fā)芽數(shù)y與溫差x之間的回歸方程(系數(shù)精確到0.01);

②若127日的晝夜溫差為,通過建立的y關(guān)于x的回歸方程,估計該實驗室127日當(dāng)天100顆種子的發(fā)芽數(shù).

參考數(shù)據(jù):.

參考公式:

相關(guān)系數(shù):(當(dāng)時,具有較強(qiáng)的相關(guān)關(guān)系).

回歸方程中斜率和截距計算公式:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P-ABCD中,平面PCD,,,EAD的中點,ACBE相交于點O.

1)證明:平面ABCD.

2)求直線BC與平面PBD所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知A、B、C是橢圓W上的三個點,O是坐標(biāo)原點.

(I)當(dāng)點BW的右頂點,且四邊形OABC為菱形時,求此菱形的面積.

(II)當(dāng)點B不是W的頂點時,判斷四邊形OABC是否可能為菱形,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】關(guān)于函數(shù),下列判斷正確的是(

A.的極大值點

B.函數(shù)有且只有1個零點

C.存在正實數(shù),使得成立

D.對任意兩個正實數(shù),,且,若,則.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)討論函數(shù)的極值點的個數(shù);

2)若有兩個極值點,證明:.

查看答案和解析>>

同步練習(xí)冊答案