【題目】為了解貴州省某州2020屆高三理科生的化學(xué)成績的情況,該州教育局組織高三理科生進(jìn)行了摸底考試,現(xiàn)從參加考試的學(xué)生中隨機(jī)抽取了100名理科生,,將他們的化學(xué)成績(滿分為100分)分為6組,得到如圖所示的頻率分布直方圖.

1)求a的值;

2)記A表示事件“從參加考試的所有理科生中隨機(jī)抽取一名學(xué)生,該學(xué)生的化學(xué)成績不低于70分”,試估計(jì)事件A發(fā)生的概率;

3)在抽取的100名理科生中,采用分層抽樣的方法從成績在內(nèi)的學(xué)生中抽取10名,再從這10名學(xué)生中隨機(jī)抽取4名,記這4名理科生成績在內(nèi)的人數(shù)為X,求X的分布列與數(shù)學(xué)期望.

【答案】(1)(2)0.65(3)詳見解析

【解析】

1)根據(jù)所有的小矩形的面積之和為得到方程,解得.

2)根據(jù)頻率分布直方圖,計(jì)算概率.

3)按分層抽樣的規(guī)則分別計(jì)算出成績在,內(nèi)的人數(shù),在列出分布列,計(jì)算出數(shù)學(xué)期望.

解:(1,

,

2成績不低于70分的頻率為

事件A發(fā)生的概率約為0.65.

3)抽取的100名理科生中,成績在內(nèi)的有人,

成績在內(nèi)的有人,故采用分層抽樣抽取的10名理科生中,

成績在內(nèi)的有4人,在內(nèi)的有6人,

由題可知,X的可能取值為01,23,4,

,

,

的分布列為

X

0

1

2

3

4

P

.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)正項(xiàng)數(shù)列的前n項(xiàng)和為,已知

(1)求證:數(shù)列是等差數(shù)列,并求其通項(xiàng)公式

(2)設(shè)數(shù)列的前n項(xiàng)和為,且,若對任意都成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】圖()是某品牌汽車年月銷量統(tǒng)計(jì)圖,圖()是該品牌汽車月銷量占所屬汽車公司當(dāng)月總銷量的份額統(tǒng)計(jì)圖,則下列說法錯誤的是(

A.該品牌汽車年全年銷量中,月份月銷量最多

B.該品牌汽車年上半年的銷售淡季是月份,下半年的銷售淡季是月份

C.年該品牌汽車所屬公司月份的汽車銷量比月份多

D.該品牌汽車年下半年月銷量相對于上半年,波動性小,變化較平穩(wěn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面角坐標(biāo)系中,以坐標(biāo)原點(diǎn)為極點(diǎn), 軸的正半軸為極軸建立極坐標(biāo)系,已知曲線的極坐標(biāo)方程為,將曲線向左平移個(gè)單位長度得到曲線.

(1)求曲線的參數(shù)方程;

(2)已知為曲線上的動點(diǎn), 兩點(diǎn)的極坐標(biāo)分別為,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,以原點(diǎn)為極點(diǎn),以軸正半軸為極軸,建立極坐標(biāo)系,直線的極坐標(biāo)方程為,曲線的參數(shù)方程為:為參數(shù)),為直線上距離為的兩動點(diǎn),點(diǎn)為曲線上的動點(diǎn)且不在直線上.

1)求曲線的普通方程及直線的直角坐標(biāo)方程.

2)求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校高三實(shí)驗(yàn)班的60名學(xué)生期中考試的語文、數(shù)學(xué)成績都在內(nèi),其中語文成績分組區(qū)間是:,,,,.其成績的頻率分布直方圖如圖所示,這60名學(xué)生語文成績某些分?jǐn)?shù)段的人數(shù)與數(shù)學(xué)成績相應(yīng)分?jǐn)?shù)段的人數(shù)之比如下表所示:

分組區(qū)間

語文人數(shù)

24

3

數(shù)學(xué)人數(shù)

12

4

1)求圖中的值及數(shù)學(xué)成績在的人數(shù);

2)語文成績在3名學(xué)生均是女生,數(shù)學(xué)成績在4名學(xué)生均是男生,現(xiàn)從這7名學(xué)生中隨機(jī)選取4名學(xué)生,事件為:“其中男生人數(shù)不少于女生人數(shù)”,求事件發(fā)生的概率;

3)若從數(shù)學(xué)成績在的學(xué)生中隨機(jī)選取2名學(xué)生,且這2名學(xué)生中數(shù)學(xué)成績在的人數(shù)為,求的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖為我國數(shù)學(xué)家趙爽(約3世紀(jì)初)在為《周牌算經(jīng)》作注時(shí)驗(yàn)證勾股定理的示意圖,現(xiàn)在提供6種不同的顏色給其中5個(gè)小區(qū)域涂色,規(guī)定每個(gè)區(qū)域只涂一種顏色,相鄰區(qū)域顏色不同,則,區(qū)域涂同色的概率為(

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩隊(duì)進(jìn)行一場排球比賽,根據(jù)以往經(jīng)驗(yàn),單局比賽甲隊(duì)勝乙隊(duì)的概率為.本場比賽采用五局三勝制,即先勝三局的隊(duì)獲勝,比賽結(jié)束.設(shè)各局比賽相互間沒有影響且無平局.求:

(1)前三局比賽甲隊(duì)領(lǐng)先的概率;

(2)設(shè)本場比賽的局?jǐn)?shù)為,求的概率分布和數(shù)學(xué)期望. (用分?jǐn)?shù)表示)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),下述四個(gè)結(jié)論:

是偶函數(shù);

的最小正周期為;

的最小值為0;

上有3個(gè)零點(diǎn)

其中所有正確結(jié)論的編號是(

A.①②B.①②③C.①③④D.②③④

查看答案和解析>>

同步練習(xí)冊答案