【題目】有以下四個命題,其中正確的是( )

A. 由獨立性檢驗可知,有的把握認為物理成績與數(shù)學成績有關,若某人數(shù)學成績優(yōu)秀,則他有的可能物理成績優(yōu)秀;

B. 兩個隨機變量相關性越強,則相關系數(shù)的絕對值越接近于

C. 在線性回歸方程中,當變量每增加一個單位時,變量平均增加個單位

D. 線性回歸方程對應的直線至少經(jīng)過樣本數(shù)據(jù)點中的一個點

【答案】C

【解析】

對于A. 的把握認為物理成績與數(shù)學成績有關,是指“不出錯的概率”,
不是“數(shù)學成績優(yōu)秀,物理成績就有的可能優(yōu)秀”,A錯誤;

對于B,根據(jù)隨機變量的相關系數(shù)知,兩個隨機變量相關性越強,則相關系數(shù)的絕對值越接近于1,B錯誤;

對于C.根據(jù)線性回歸方程的系數(shù) 知,當解釋變量每增加一個單位時,預報變量平均增加0.2個單位,C正確;

對于D.線性回歸方程對應的直線過樣本中心點,不一定過樣本數(shù)據(jù)中的點,故D錯誤;

故選C.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知等差數(shù)列的前項和為,公差,且,成等比數(shù)列.

(1)求數(shù)列的通項公式;

(2)設是首項為1,公比為的等比數(shù)列,求數(shù)列的前項和.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】供電部門對某社區(qū)位居民2017年12月份人均用電情況進行統(tǒng)計后,按人均用電量分為, , 五組,整理得到如下的頻率分布直方圖,則下列說法錯誤的是

A. 月份人均用電量人數(shù)最多的一組有

B. 月份人均用電量不低于度的有

C. 月份人均用電量為

D. 在這位居民中任選位協(xié)助收費,選到的居民用電量在一組的概率為

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4﹣4;坐標系與參數(shù)方程
已知曲線C1的參數(shù)方程是 (φ為參數(shù)),以坐標原點為極點,x軸的正半軸為極軸建立坐標系,曲線C2的坐標系方程是ρ=2,正方形ABCD的頂點都在C2上,且A,B,C,D依逆時針次序排列,點A的極坐標為(2, ).
(1)求點A,B,C,D的直角坐標;
(2)設P為C1上任意一點,求|PA|2+|PB|2+|PC|2+|PD|2的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知a,b,c分別為△ABC三個內(nèi)角A,B,C的對邊,c= asinC﹣ccosA.
(1)求A;
(2)若a=2,△ABC的面積為 ,求b,c.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】己知拋物線的焦點為,準線與軸的交點為,過點的直線,拋物線相交于不同的兩點.

(1)若,求直線的方程;

(2)若點在以為直徑的圓外部,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系中,直線的參數(shù)方程為為參數(shù)),在極坐標(與直角坐標系取相同的長度單位,且以原點為極點,軸正半軸為極軸)中,圓的方程為

(1)求圓的直角坐標方程;

(2)設圓與直線交于點,,若點的坐標為,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知橢圓C的中心在原點,焦點在x軸上,離心率為,過橢圓C上一點P(2,1)作x軸的垂線,垂足為Q.

(Ⅰ)求橢圓C的方程;

(Ⅱ)過點Q的直線l交橢圓C于點A,B,且3+=,求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列{an}滿足a1=1,an+1﹣an=2,等比數(shù)列{bn}滿足b1=a1 , b4=a4+1.
(1)求數(shù)列{an},{bn}的通項公式;
(2)設cn=an+bn , 求數(shù)列{cn}的前n項和Sn

查看答案和解析>>

同步練習冊答案