18.為了解某地區(qū)觀眾對(duì)大型綜藝活動(dòng)《中國好聲音》的收視情況,隨機(jī)抽取了100名觀眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾收看該節(jié)目的場數(shù)與所對(duì)應(yīng)的人數(shù)表:
場數(shù)91011121314
人數(shù)10182225205
將收看該節(jié)目場次不低于13場的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.
根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料判斷我們能否有95%的把握認(rèn)為“歌迷”與性別有關(guān)?
非歌迷歌迷合計(jì)
合計(jì)
附:
P(K2≥k00.250.150.100.050.0250.0100.0050.001
k01.3232.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d為樣本容量.

分析 根據(jù)所給的觀眾收看該節(jié)目的場數(shù)與所對(duì)應(yīng)的人數(shù)表得出數(shù)據(jù)列出列聯(lián)表,再代入公式計(jì)算得出K2,與3.841比較即可得出結(jié)論

解答 解:由統(tǒng)計(jì)表可知,在抽取的100人中,“歌迷”有25人,從而完成2×2列聯(lián)表如下:

非歌迷歌迷合計(jì)
301545
451055
合計(jì)7525100
…(3分)
將2×2列聯(lián)表中的數(shù)據(jù)代入公式計(jì)算,得:
K2=$\frac{100×(30×10-45×15)^{2}}{75×25×45×55}$≈3.030,
因?yàn)?.030<3.841,
所以我們沒有95%的把握認(rèn)為“歌迷”與性別有關(guān).

點(diǎn)評(píng) 本題考查獨(dú)立性檢驗(yàn)的運(yùn)用,考查學(xué)生的計(jì)算能力,比較基礎(chǔ),

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知x,y∈R+,且滿足x+2y=2xy,那么x+4y的最小值為( 。
A.3-$\sqrt{2}$B.3+2$\sqrt{2}$C.3+$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)f(x)=ex(ax2+3),其中a為實(shí)數(shù),e為自然對(duì)數(shù)的底數(shù)
(1)當(dāng)a=-1時(shí),求f(x)的極值;
(2)若f(x)為[1,2]上的單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.一個(gè)幾何體的三視圖如圖所示,則該幾何體體積=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.給出下列5種說法:
①標(biāo)準(zhǔn)差越小,樣本數(shù)據(jù)的波動(dòng)也越。
②回歸分析研究的是兩個(gè)相關(guān)事件的獨(dú)立性;
③在回歸分析中,預(yù)報(bào)變量是由解釋變量和隨機(jī)誤差共同確定的;
④相關(guān)指數(shù)R2是用來刻畫回歸效果的,R2的值越大,說明回歸模型的擬合效果越好.
⑤對(duì)分類變量X與Y的隨機(jī)變量K2的觀測值k來說,k越小,判斷“X與Y有關(guān)系”的把握越。
其中說法正確的是①③④⑤(請將正確說法的序號(hào)寫在橫線上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知數(shù)列{an}的前n項(xiàng)和為Sn=-3n2+49n.
(1)請問數(shù)列{an}是否為等差數(shù)列?如果是,請證明;
(2)設(shè)bn=|an|,求數(shù)列{bn}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知|$\overrightarrow a}$|=3,|$\overrightarrow b}$|=4,且$\overrightarrow a$與$\overrightarrow b$不共線,若($\overrightarrow a$+k$\overrightarrow b$)⊥($\overrightarrow a$-k$\overrightarrow b$),則k=$±\frac{3}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知向量$\overrightarrow a$=(4,-2),$\overrightarrow b$=(-1,3),$\overrightarrow c$=(6,8).
(1)求($\overrightarrow a$+$\overrightarrow b$)•$\overrightarrow c$;
(2)若$\overrightarrow a$⊥($\overrightarrow b$-λ$\overrightarrow c$),求實(shí)數(shù)λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=3klnx+$\frac{2{k}^{2}-{x}^{2}}{x}$(k為常數(shù),k>0).
(1)當(dāng)k=1時(shí),求f(x)的極值;
(2)若k∈[3,+∞),曲線y=f(x)上總存在相異兩點(diǎn)M(x1,y1),N(x2,y2),使得曲線y=f(x)在M,N兩點(diǎn)處的切線互相平行,求x1+x2的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案