6.一個幾何體的三視圖如圖所示,則該幾何體體積=4.

分析 由已知中的三視圖可得:該幾何體是一個以俯視圖為底面的四棱錐,進而得到答案.

解答 解:由已知中的三視圖可得:該幾何體是一個以俯視圖為底面的四棱錐,
其底面面積為:S=$\frac{1}{2}$×(2+4)×2=6,
高h=2,
故體積V=$\frac{1}{3}Sh$=4,
故答案:4.

點評 本題考查的知識點是由三視圖,求體積和表面積,根據(jù)已知的三視圖,判斷幾何體的形狀是解答的關(guān)鍵.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

15.如圖所示,E是正方形ABCD所在平面外一點,E在面ABCD上的正投影F恰在AC上,F(xiàn)G∥BC,AB=AE=2,∠EAB=60°,有以下四個命題:
(1)CD⊥面GEF;
(2)AG=1;
(3)以AC,AE作為鄰邊的平行四邊形面積是8;
(4)∠EAD=60°.
其中正確命題的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

17.若直線a,b與兩異面直線c,d都相交,則直線a,b的位置關(guān)系是相交或異面.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

14.函數(shù)f(x)=ax2+bx(a>0,b>0)在點(1,f(1))處的切線斜率為2,則$\frac{2a+b}{ab}$的最小值是(  )
A.2B.3$\sqrt{2}$C.1D.4

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.在△ABC中,a、b、c分別是A、B、C的對邊,已知2cos$\frac{C}{2}$-sin$\frac{C}{2}$+1=0.
( I)求sinC的值;
( II)若a2+b2=4(a+b)-8,求c的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知隨機變量η=3ξ+2,且Dξ=2,則Dη=18.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.為了解某地區(qū)觀眾對大型綜藝活動《中國好聲音》的收視情況,隨機抽取了100名觀眾進行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀眾收看該節(jié)目的場數(shù)與所對應(yīng)的人數(shù)表:
場數(shù)91011121314
人數(shù)10182225205
將收看該節(jié)目場次不低于13場的觀眾稱為“歌迷”,已知“歌迷”中有10名女性.
根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料判斷我們能否有95%的把握認為“歌迷”與性別有關(guān)?
非歌迷歌迷合計
合計
附:
P(K2≥k00.250.150.100.050.0250.0100.0050.001
k01.3232.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d為樣本容量.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為直角梯形,∠CDA=∠BAD=90°,AB=AD=2DC=2$\sqrt{2}$,PA=4且E為PB的中點.
(1)求證:CE∥平面PAD;
(2)求直線CE與平面PAC所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.已知函數(shù)f(x)=$\frac{2}{3}$x3+ax2+ax+1有兩個極值點x1,x2且x1<x2
(1)求a的取值范圍;
(2)若f(x1)+f(x2)>$\frac{2}{3}$,求a的取值范圍.

查看答案和解析>>

同步練習冊答案