17.若直線a,b與兩異面直線c,d都相交,則直線a,b的位置關(guān)系是相交或異面.

分析 畫(huà)出草圖,當(dāng)點(diǎn)D與點(diǎn)B重合時(shí),兩條直線相交,當(dāng)點(diǎn)D與點(diǎn)B不重合時(shí),兩條直線異面,即可得到結(jié)論.

解答 解:如圖,直線c與d是異面直線,直線a與直線b分別與兩條異面直線c與d相交與點(diǎn)A,B,C,D,

根據(jù)題意可得當(dāng)點(diǎn)D與點(diǎn)B重合時(shí),兩條直線相交,當(dāng)點(diǎn)D與點(diǎn)B不重合時(shí),兩條直線異面.
故答案為:相交或異面.

點(diǎn)評(píng) 本題主要考查空間中直線與直線的位置關(guān)系,考查分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.二項(xiàng)式(a-1)8的展開(kāi)式中,最大的二項(xiàng)式系數(shù)為( 。
A.C${\;}_{8}^{4}$B.-C${\;}_{8}^{4}$C.C${\;}_{9}^{5}$D.-C${\;}_{9}^{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知x,y∈R+,且滿足x+2y=2xy,那么x+4y的最小值為( 。
A.3-$\sqrt{2}$B.3+2$\sqrt{2}$C.3+$\sqrt{2}$D.4$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)在點(diǎn)x0處取得極值,則必有( 。
A.f′(x0)=0B.f′(x0)<0
C.f′(x0)=0且f″(x0)<0D.f′(x0)或f′(x0)不存在

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知直線l的傾斜角是直線y=2x+3傾斜角的2倍,則直線l的斜率為$-\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=ax2+lnx(a為正實(shí)數(shù)),且f(x)的導(dǎo)函數(shù)f′(x)在x=$\frac{1}{2}$處取極小值.
(1)求實(shí)數(shù)a的值;
(2)設(shè)函數(shù)g(x)=3x+x2,若方程f(x)-g(x)+m=0在x∈[$\frac{1}{2}$,2]內(nèi)恰有兩個(gè)不相等的實(shí)數(shù)根,求實(shí)數(shù)m的取值范圍(參考數(shù)據(jù):ln2≈0.693);
(3)記函數(shù)h(x)=f(x)-$\frac{3}{2}$x2-(b+1)x(b≥$\frac{3}{2}$).設(shè)x1,x2(x2>x1>0)是函數(shù)h(x)的兩個(gè)極值點(diǎn),點(diǎn)A(x1,h(x1)),B(x2,h(x2)),直線AB的斜率為kAB.若kAB≤$\frac{r}{{x}_{1}{-x}_{2}}$對(duì)任意x2>x1>0恒成立,求實(shí)數(shù)r的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.設(shè)f(x)=ex(ax2+3),其中a為實(shí)數(shù),e為自然對(duì)數(shù)的底數(shù)
(1)當(dāng)a=-1時(shí),求f(x)的極值;
(2)若f(x)為[1,2]上的單調(diào)函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.一個(gè)幾何體的三視圖如圖所示,則該幾何體體積=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知向量$\overrightarrow a$=(4,-2),$\overrightarrow b$=(-1,3),$\overrightarrow c$=(6,8).
(1)求($\overrightarrow a$+$\overrightarrow b$)•$\overrightarrow c$;
(2)若$\overrightarrow a$⊥($\overrightarrow b$-λ$\overrightarrow c$),求實(shí)數(shù)λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案