9.設(shè)f(x)=ex(ax2+3),其中a為實(shí)數(shù),e為自然對(duì)數(shù)的底數(shù)
(1)當(dāng)a=-1時(shí),求f(x)的極值;
(2)若f(x)為[1,2]上的單調(diào)函數(shù),求a的取值范圍.

分析 (1)求出函數(shù)的導(dǎo)數(shù),解關(guān)于導(dǎo)函數(shù)的不等式,求出函數(shù)的單調(diào)區(qū)間,從而求出函數(shù)的極值;
(2)求出函數(shù)的導(dǎo)數(shù),問(wèn)題轉(zhuǎn)化為a≥[-$\frac{3}{x(x+2)}$]max或a≤[-$\frac{3}{x(x+2)}$]min,x∈[1,2],求出a的范圍即可.

解答 解:(1)a=-1時(shí),f(x)=ex(-x2+3),
f′(x)=-ex(x+3)(x-1),
令f′(x)>0,解得:-3<x<1,令f′(x)<0,解得:x>1或x<-3,
故f(x)在(-∞,-3)遞減,在(-3,1)遞增,在(1,+∞)遞減,
∴f(x)極小值=f(-3)=-$\frac{6}{{e}^{3}}$,f(x)極大值=f(1)=2e;
(2)f′(x)=ex(ax2+2ax+3),
若f(x)為[1,2]上的單調(diào)函數(shù),
即ax2+2ax+3≥0或ax2+2ax+3≤0在x∈[1,2]恒成立,
故只需a≥[-$\frac{3}{x(x+2)}$]max或a≤[-$\frac{3}{x(x+2)}$]min,x∈[1,2],
而y=-$\frac{3}{x(x+2)}$∈[-1,-$\frac{3}{8}$],
故a≥-$\frac{3}{8}$或a≤-1.

點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、極值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問(wèn)題,是一道中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.已知點(diǎn)P是雙曲線(xiàn)$\frac{{x}^{2}}{4}$-$\frac{{y}^{2}}{5}$=1上一點(diǎn),若PF1⊥PF2,則△PF1F2的面積為( 。
A.$\frac{5}{4}$B.$\frac{5}{2}$C.5D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.函數(shù)y=$\sqrt{x+2}$+$\sqrt{3-x}$的定義域?yàn)閇-2,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.若直線(xiàn)a,b與兩異面直線(xiàn)c,d都相交,則直線(xiàn)a,b的位置關(guān)系是相交或異面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

4.若關(guān)于x的不等式4x-2x+1-a≤0在[1,2]上恒成立,則實(shí)數(shù)a的取值范圍為a≥8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.函數(shù)f(x)=ax2+bx(a>0,b>0)在點(diǎn)(1,f(1))處的切線(xiàn)斜率為2,則$\frac{2a+b}{ab}$的最小值是( 。
A.2B.3$\sqrt{2}$C.1D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.在△ABC中,a、b、c分別是A、B、C的對(duì)邊,已知2cos$\frac{C}{2}$-sin$\frac{C}{2}$+1=0.
( I)求sinC的值;
( II)若a2+b2=4(a+b)-8,求c的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.為了解某地區(qū)觀(guān)眾對(duì)大型綜藝活動(dòng)《中國(guó)好聲音》的收視情況,隨機(jī)抽取了100名觀(guān)眾進(jìn)行調(diào)查,其中女性有55名.下面是根據(jù)調(diào)查結(jié)果繪制的觀(guān)眾收看該節(jié)目的場(chǎng)數(shù)與所對(duì)應(yīng)的人數(shù)表:
場(chǎng)數(shù)91011121314
人數(shù)10182225205
將收看該節(jié)目場(chǎng)次不低于13場(chǎng)的觀(guān)眾稱(chēng)為“歌迷”,已知“歌迷”中有10名女性.
根據(jù)已知條件完成下面的2×2列聯(lián)表,并據(jù)此資料判斷我們能否有95%的把握認(rèn)為“歌迷”與性別有關(guān)?
非歌迷歌迷合計(jì)
合計(jì)
附:
P(K2≥k00.250.150.100.050.0250.0100.0050.001
k01.3232.0722.7063.8415.0246.6357.87910.828
${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d為樣本容量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

19.下列說(shuō)法中:
①終邊落在y軸上的角的集合是{α|α=$\frac{kπ}{2}$,k∈Z};
②函數(shù)y=2cos(x-$\frac{π}{4}$)圖象的一個(gè)對(duì)稱(chēng)中心是($\frac{3π}{4}$,0);
③函數(shù)y=tanx在其定義域內(nèi)是增函數(shù);④為了得到函數(shù)y=sin(2x-$\frac{π}{3}$)的圖象,只需把函數(shù)y=sin2x的圖象向右平移$\frac{π}{6}$個(gè)單位長(zhǎng)度.
其中正確說(shuō)法的序號(hào)是②④.

查看答案和解析>>

同步練習(xí)冊(cè)答案