若函數(shù)f(x)=數(shù)學(xué)公式的定義域為A,函數(shù)g(x)=數(shù)學(xué)公式的定義域為B,則使A∩B=∅的實數(shù)a的取值范圍是


  1. A.
    (-1,3)
  2. B.
    [-1,3]
  3. C.
    (-2,4)
  4. D.
    [-2,4]
B
分析:根據(jù)函數(shù)的定義域求法,分別求出A,B,然后利用A∩B=∅,確定實數(shù)a的取值范圍.
解答:要使函數(shù)f(x)有意義,則x2-2x-8≥0,即(x+2)(x-4)≥0,解得x≥4或x≤-2,即A={x|x≥4或x≤-2}.
要使函數(shù)g(x)有意義,則1-|x-a|>0,即|x-a|<1,所以-1<x-a<1,即a-1<x<a+1,所以B={x|a-1<x<a+1}.
要使A∩B=∅,則,即,所以-1≤a≤3.
故選B.
點評:本題主要考查函數(shù)定義域的求法,以及利用集合關(guān)系確定參數(shù)的取值范圍,主要端點處的等號的取舍問題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=ax-
b
x
-2lnx,f(1)=0

(1)若函數(shù)f(x)在其定域義內(nèi)為單調(diào)函數(shù),求實數(shù)a的取值范圍;
(2)若函數(shù)f(x)的圖象在x=1處的切線的斜率為0,且an+1=f′(
1
an+1
)-nan+1

①若a1≥3,求證:an≥n+2;
②若a1=4,試比較
1
1+a1
+
1
1+a2
+…+
1
1+an
2
5
的大小,并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知函數(shù)f(x)=ax-
b
x
-2lnx,f(1)=0

(1)若函數(shù)f(x)在其定域義內(nèi)為單調(diào)函數(shù),求實數(shù)a的取值范圍;
(2)若函數(shù)f(x)的圖象在x=1處的切線的斜率為0,且an+1=f′(
1
an+1
)-nan+1

①若a1≥3,求證:an≥n+2;
②若a1=4,試比較
1
1+a1
+
1
1+a2
+…+
1
1+an
2
5
的大小,并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:模擬題 題型:解答題

已知函數(shù)
(1)若函數(shù)f(x)在其定域義內(nèi)為單調(diào)函數(shù),求實數(shù)a的取值范圍;
(2)若函數(shù)f(x)的圖象在x=1處的切線的斜率為0,且
①若a1≥3,求證:an≥n+2;
②若a1=4,試比較的大小,并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年湖北省武漢市黃陂一中高三數(shù)學(xué)滾動檢測試卷3(8.20)(解析版) 題型:解答題

已知函數(shù)
(1)若函數(shù)f(x)在其定域義內(nèi)為單調(diào)函數(shù),求實數(shù)a的取值范圍;
(2)若函數(shù)f(x)的圖象在x=1處的切線的斜率為0,且
①若a1≥3,求證:an≥n+2;
②若a1=4,試比較的大小,并說明你的理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年四川省南充高中高三第六次月考數(shù)學(xué)試卷(理科)(解析版) 題型:解答題

已知函數(shù)
(1)若函數(shù)f(x)在其定域義內(nèi)為單調(diào)函數(shù),求實數(shù)a的取值范圍;
(2)若函數(shù)f(x)的圖象在x=1處的切線的斜率為0,且
①若a1≥3,求證:an≥n+2;
②若a1=4,試比較的大小,并說明你的理由.

查看答案和解析>>

同步練習(xí)冊答案