分析 (1)由橢圓的離心率e=$\frac{c}{a}$=$\sqrt{\frac{{c}^{2}}{{a}^{2}}}$=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$$\frac{\sqrt{6}}{3}$,設(shè)出直線方程,利用點(diǎn)到直線的距離公式d=$\frac{ab}{\sqrt{{a}^{2}+^{2}}}$=$\frac{\sqrt{3}}{2}$,代入求得a和b的值,求得橢圓方程;
(2)直線方程代入橢圓方程,利用韋達(dá)定理及以CD為直徑的圓過(guò)E點(diǎn),結(jié)合向量知識(shí),即可得到結(jié)論.
解答 解:(1)由e=$\frac{c}{a}$=$\sqrt{\frac{{c}^{2}}{{a}^{2}}}$=$\sqrt{1-\frac{^{2}}{{a}^{2}}}$$\frac{\sqrt{6}}{3}$,
整理得:a2=3b2,
直線AB的方程為bx-ay-ab=0,
由點(diǎn)到直線的距離公式:d=$\frac{ab}{\sqrt{{a}^{2}+^{2}}}$=$\frac{\sqrt{3}}{2}$,
解得:b=1,a=$\sqrt{3}$,
∴橢圓的方程$\frac{{x}^{2}}{3}+{y}^{2}=1$;
(2)證明:將y=kx+t代入橢圓方程,整理得(1+3k2)x2+6ktx+3t2-3=0,
△=(6kt)2-12(1+3k2)(t2-1)>0,解得:k2>$\frac{{t}^{2}-1}{3}$,
設(shè)C(x1,y1)、D(x2,y2),則x1+x2=$\frac{-6kt}{1+3{k}^{2}}$,x1•x2=$\frac{3({t}^{2}-1)}{1+3{k}^{2}}$,
∵以CD為直徑的圓過(guò)E點(diǎn),
∴$\overrightarrow{EC}$•$\overrightarrow{ED}$=0,即(x1+1)(x2+1)+y1y2=0,
y1y2=(kx1+t)(kx2+t)
=k2x1•x2+t(x1+x2)+t2,
∴$({k}^{2}+1)\frac{3({t}^{2}-1)}{1+3{k}^{2}}$-$(tk+1)\frac{6kt}{1+3{k}^{2}}$+t2+1=0,
解得:k=$\frac{2{t}^{2}-1}{3t}$,
k2>$\frac{{t}^{2}-1}{3}$,對(duì)任意的t>0都成立,則存在k,使得以線段CD為直徑的圓過(guò)E點(diǎn).
$(\frac{2{t}^{2}-1}{3t})^{2}$-$\frac{{t}^{2}-1}{3}$=$\frac{({t}^{2}-1)^{2}+{t}^{2}}{9{t}^{2}}$>0,即k2>$\frac{{t}^{2}-1}{3}$,
所以,對(duì)任意的t>0,都存在k,使得以線段CD為直徑的圓過(guò)E點(diǎn).
點(diǎn)評(píng) 本題考查橢圓的標(biāo)準(zhǔn)方程,考查直線與橢圓的位置關(guān)系,考查韋達(dá)定理的運(yùn)用,考查學(xué)生分析解決問(wèn)題的能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | -1 | B. | -2 | C. | 1 | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 10 | B. | 50 | C. | 100 | D. | 1000 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 246 | B. | 258 | C. | 280 | D. | 270 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 12 | B. | 8 | C. | -8 | D. | 2 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com