【題目】如圖1,在平行四邊形中,,,以對(duì)角線(xiàn)為折痕把折起,使點(diǎn)到圖2所示點(diǎn)的位置,使得.

(Ⅰ)求證:平面平面

(Ⅱ)求二面角的余弦值.

【答案】(Ⅰ)見(jiàn)解析; (Ⅱ).

【解析】

(Ⅰ)在圖1中,求解三角形可得AB⊥BD,同理CD⊥BD,圖2中,在△PAD中,求解三角形可得AD⊥PD,結(jié)合PD⊥BD,得到PD⊥平面ABD,進(jìn)一步得到PD⊥AB,
AB⊥BD,可得AB⊥平面PBD,由面面垂直的判定可得平面PAB⊥平面PBD;
(Ⅱ)以D為坐標(biāo)原點(diǎn),分別以DB,DP所在直線(xiàn)為y,z軸,過(guò)點(diǎn)D在平面ABD內(nèi)平行于AB的直線(xiàn)為x軸建立空間直角坐標(biāo)系,分別求出平面PAD與平面PAB的一個(gè)法向量,由兩法向量所成角的余弦值可得二面角B-PA-D的余弦值.

(Ⅰ)圖1中,

由余弦定理得,

,∴,

,

同理.

圖2中,在中,,

,∴,即

,∴平面.

平面,∴,

.∴平面平面

∴平面平面.

(Ⅱ)如圖,以為坐標(biāo)原點(diǎn),所在直線(xiàn)分別為軸,

過(guò)點(diǎn)在平面內(nèi)平行于的直線(xiàn)為軸建立空間直角坐標(biāo)系.

設(shè)平面的法向量為

,得平面的一個(gè)法向量為

同理可得平面的一個(gè)法向量

.

又二面角的平面角為銳角,

所以,二面角的余弦值為.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)的一系列對(duì)應(yīng)值如下表:

1)根據(jù)表格提供的數(shù)據(jù)求函數(shù)的一個(gè)解析式;

2)根據(jù)(1)的結(jié)果,若函數(shù)周期為,當(dāng)時(shí),方程 恰有兩個(gè)不同的解,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】下列說(shuō)法正確的是( )

A.回歸直線(xiàn)至少經(jīng)過(guò)其樣本數(shù)據(jù)中的一個(gè)點(diǎn)

B.從獨(dú)立性檢驗(yàn)可知有99%的把握認(rèn)為吃地溝油與患胃腸癌有關(guān)系時(shí),我們就說(shuō)如果某人吃地溝油,那么他有99%可能患胃腸癌

C.在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高

D.將一組數(shù)據(jù)的每一個(gè)數(shù)據(jù)都加上或減去同一個(gè)常數(shù)后,其方差也要加上或減去這個(gè)常數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,,其中.

(Ⅰ)當(dāng)時(shí),求函數(shù)的單調(diào)區(qū)間;

(Ⅱ)若恒成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在極坐標(biāo)系中,曲線(xiàn)C1的極坐標(biāo)方程是,在以極點(diǎn)為原點(diǎn)O,極軸為x軸正半軸(兩坐標(biāo)系取相同的單位長(zhǎng)度)的直角坐標(biāo)系xOy中,曲線(xiàn)C2的參數(shù)方程為θ為參數(shù)).

1)求曲線(xiàn)C1的直角坐標(biāo)方程與曲線(xiàn)C2的普通方程;

2)將曲線(xiàn)C2經(jīng)過(guò)伸縮變換后得到曲線(xiàn)C3,若M,N分別是曲線(xiàn)C1和曲線(xiàn)C3上的動(dòng)點(diǎn),求|MN|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某年級(jí)位同學(xué)參加語(yǔ)文和數(shù)學(xué)兩門(mén)課的考試,每門(mén)課的考分從0100. 假如考試的結(jié)果沒(méi)有兩位同學(xué)的成績(jī)是完全相同的(即至少有一門(mén)課的成績(jī)不同). 另外,“甲比乙好”是指同學(xué)甲的語(yǔ)文和數(shù)學(xué)的考分均分別高于同學(xué)乙的語(yǔ)文和數(shù)學(xué)的考分. 試問(wèn):當(dāng)最小為何值時(shí),必存在三位同學(xué)(設(shè)為甲、乙、丙),有甲比乙好,乙比丙好.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】(本小題滿(mǎn)分14分)

已知數(shù)列是首項(xiàng)為1,公比為2的等比數(shù)列,數(shù)列的前項(xiàng)和

1)求數(shù)列的通項(xiàng)公式;

2)求數(shù)列的前項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知橢圓的焦距為8,其短軸的兩個(gè)端點(diǎn)與長(zhǎng)軸的一個(gè)端點(diǎn)構(gòu)成正三角形。

(1)求的方程;

(2)設(shè)的左焦點(diǎn),為直線(xiàn)上任意一點(diǎn),過(guò)點(diǎn)的垂線(xiàn)交于兩點(diǎn),.

(i)證明:平分線(xiàn)段(其中為坐標(biāo)原點(diǎn));

(ii)當(dāng)取最小值時(shí),求點(diǎn)的坐標(biāo)。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù)f(x)=lnxx2+ax,g(x)=exe,其中a0.

(1)若a1,證明:f(x)≤0

(2)用max{m,n}表示mn中的較大值,設(shè)函數(shù)h(x)=max{f(x),g(x)},討論函數(shù)h(x)在(0,+∞)上的零點(diǎn)的個(gè)數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案