【題目】在極坐標(biāo)系中,曲線C1的極坐標(biāo)方程是,在以極點(diǎn)為原點(diǎn)O,極軸為x軸正半軸(兩坐標(biāo)系取相同的單位長度)的直角坐標(biāo)系xOy中,曲線C2的參數(shù)方程為(θ為參數(shù)).
(1)求曲線C1的直角坐標(biāo)方程與曲線C2的普通方程;
(2)將曲線C2經(jīng)過伸縮變換后得到曲線C3,若M,N分別是曲線C1和曲線C3上的動(dòng)點(diǎn),求|MN|的最小值.
【答案】(1)C1的直角坐標(biāo)方程為4x+3y-24=0,C2的普通方程為x2+y2=1;
(2).
【解析】
(1)由極坐標(biāo)與直角坐標(biāo)的互化公式,化簡即可求得C1的直角坐標(biāo)方程,結(jié)合三角函數(shù)的基本關(guān)系式,消去參數(shù),即可求得C2的普通方程;
(2)將曲線C2經(jīng)過伸縮變換得到曲線C3C3的參數(shù)方程為為參數(shù)),設(shè)N(2cosα,2sinα),利用點(diǎn)到直線的距離公式,求得d有最小值,即可求解.
(1)由題意,曲線C1的極坐標(biāo)方程是,
即4ρcosθ+3ρsinθ=24,又由,
所以4x+3y-24=0,故C1的直角坐標(biāo)方程為4x+3y-24=0.
因?yàn)榍C2的參數(shù)方程為(θ為參數(shù)),所以x2+y2=1,
故C2的普通方程為x2+y2=1.
(2)將曲線C2經(jīng)過伸縮變換后得到曲線C3,
則曲線C3的參數(shù)方程為為參數(shù)).
設(shè)N(2cosα,2sinα),則點(diǎn)N到曲線C1的距離
(其中滿足)
當(dāng)sin(α+φ)=1時(shí),d有最小值,
所以|MN|的最小值為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知(是實(shí)數(shù),方程有兩個(gè)實(shí)根,數(shù)列滿足().
(1)求數(shù)列的通項(xiàng)公式(用表示);
(2)若,求的前項(xiàng)和.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,橢圓的極坐標(biāo)方程為,其左焦點(diǎn)在直線上.
(1)若直線與橢圓交于兩點(diǎn),求的值;
(2)求橢圓的內(nèi)接矩形面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知點(diǎn)是圓:上一動(dòng)點(diǎn),線段與圓:相交于點(diǎn).直線經(jīng)過,并且垂直于軸,在上的射影點(diǎn)為.
(1)求點(diǎn)的軌跡的方程;
(2)設(shè)圓與軸的左、右交點(diǎn)分別為,,點(diǎn)是曲線上的點(diǎn)(點(diǎn)與,不重合),直線,與直線:分別相交于點(diǎn),,求證:以直徑的圓經(jīng)過定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一個(gè)特定時(shí)段內(nèi),以點(diǎn)E為中心的7n mile以內(nèi)海域被設(shè)為警戒水域.點(diǎn)E正北55n mile處有一個(gè)雷達(dá)觀測(cè)站A,某時(shí)刻測(cè)得一艘勻速直線行駛的船只位于點(diǎn)A北偏東45°且與點(diǎn)A相距40n mile的位置B,經(jīng)過40分鐘又測(cè)得該船已行駛到點(diǎn)A北偏東(其中,)且與點(diǎn)A相距10n mile的位置C.
(I)求該船的行駛速度(單位:n mile /h);
(II)若該船不改變航行方向繼續(xù)行駛.判斷它是否會(huì)進(jìn)入警戒水域,并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平行四邊形中,,,,以對(duì)角線為折痕把折起,使點(diǎn)到圖2所示點(diǎn)的位置,使得.
(Ⅰ)求證:平面平面;
(Ⅱ)求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在四棱錐中,平面 平面,底面為梯形,,且
(Ⅰ)求證:;
(Ⅱ)求二面角B-PD-C的余弦值;
(Ⅲ)若M是棱PA的中點(diǎn),求證:對(duì)于棱BC上任意一點(diǎn)F,MF與PC都不平行.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),.
(1)若,且曲線在處的切線過原點(diǎn),求的值及直線的方程;
(2)若函數(shù)在上有零點(diǎn),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】《中國詩詞大會(huì)》(第三季)亮點(diǎn)頗多,在“人生自有詩意”的主題下,十場比賽每場都有一首特別設(shè)計(jì)的開場詩詞在聲光舞美的配合下,百人團(tuán)齊聲朗誦,別有韻味.若《沁園春·長沙》、《蜀道難》、《敕勒歌》、《游子吟》、《關(guān)山月》、《清平樂·六盤山》排在后六場,且《蜀道難》排在《游子吟》的前面,《沁園春·長沙》與《清平樂·六盤山》不相鄰且均不排在最后,則后六場的排法有__________種.(用數(shù)字作答)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com