【題目】某城市隨機抽取一年(365天)內100天的空氣質量指數的監(jiān)測數據,結果統(tǒng)計如下:
記某企業(yè)每天由空氣污染造成的經濟損失(單位:元),空氣質量指數為.當時,企業(yè)沒有造成經濟損失;當對企業(yè)造成經濟損失成直線模型(當時造成的經濟損失為,當時,造成的經濟損失;當時造成的經濟損失為2000元;
(1)試寫出的表達式:
(2)在本年內隨機抽取一天,試估計該天經濟損失超過350元的概率;
(3)若本次抽取的樣本數據有30天是在供暖季,其中有12天為重度污染,完成下面列聯表,并判斷能否有的把握認為該市本年空氣重度污染與供暖有關?
科目:高中數學 來源: 題型:
【題目】隨著我國中醫(yī)學的發(fā)展,藥用昆蟲的使用相應愈來愈多.每年春暖以后至寒冬前,是昆蟲大量活動與繁殖季節(jié),易于采集各種藥用昆蟲.已知一只藥用昆蟲的產卵數與一定范圍內的溫度有關,于是科研人員在3月份的31天中隨機挑選了5天進行研究,現收集了該種藥用昆蟲的5組觀測數據如下表:
日期 | 2日 | 7日 | 15日 | 22日 | 30日 |
溫度 | 10 | 11 | 13 | 12 | 8 |
產卵數/個 | 23 | 25 | 30 | 26 | 16 |
(1)從這5天中任選2天,記這兩天藥用昆蟲的產卵分別為,,求事件“,均不小于25”的概率;
(2)科研人員確定的研究方案是:先從這五組數據中任選2組,用剩下的3組數據建立關于的線性回歸方程,再對被選取的2組數據進行檢驗.
(。┤暨x取的是3月2日與30日的兩組數據,請根據3月7日、15日和22日這三天的數據,求出關于的線性回歸方程;
(ⅱ)若由線性回歸方程得到的估計數據與選出的檢驗數據的誤差均不超過2個,則認為得到的線性回歸方程是可靠的,試問(。┲兴玫木性回歸方程是否可靠?
附:回歸直線的斜率和截距的最小二乘估計公式分別為,.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知{an}是等差數列,設數列{bn}的前n項和為Sn,且2bn=b1(1+Sn),bn≠0,又a2b2=4,a7+b3=11.
(1)求{an}和{bn}的通項公式;
(2)令cn=anbn(n∈N*),求{cn}的前n項和Tn
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某同學用“五點法”畫函數在某一周期內的圖象時,列表并填入了部分數據,如下表:
① | |||||
(1)請將上面表格中①的數據填寫在答題卡相應位置上,并直接寫出函數的解析式;
(2)若將函數的圖象上所有點的橫坐標變?yōu)樵瓉淼?/span>倍,縱坐標不變,得到函數的圖象,求當時,函數的單調遞增區(qū)間;
(3)若將函數圖象上的所有點向右平移個單位長度,得到的圖象. 若圖象的一個對稱中心為,求的最小值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐中,底面是矩形,平面,,點、分別在線段、上,且,其中,連接,延長與的延長線交于點,連接.
(Ⅰ)求證:平面;
(Ⅱ)若時,求二面角的正弦值;
(Ⅲ)若直線與平面所成角的正弦值為時,求值.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知數列, 都是單調遞增數列,若將這兩個數列的項按由小到大的順序排成一列(相同的項視為一項),則得到一個新數列.
(1)設數列、分別為等差、等比數列,若, , ,求;
(2)設的首項為1,各項為正整數, ,若新數列是等差數列,求數列 的前項和;
(3)設(是不小于2的正整數),,是否存在等差數列,使得對任意的,在與之間數列的項數總是?若存在,請給出一個滿足題意的等差數列;若不存在,請說明理由.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】已知在三角形ABC中,AB<AC,∠BAC=90°,邊AB,AC的長分別為方程x2﹣2(1)x+40的兩個實數根,若斜邊BC上有異于端點的E,F兩點,且EF=1,則的取值范圍為_____.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com