【題目】某同學(xué)用“五點法”畫函數(shù)在某一周期內(nèi)的圖象時,列表并填入了部分?jǐn)?shù)據(jù),如下表:
① | |||||
(1)請將上面表格中①的數(shù)據(jù)填寫在答題卡相應(yīng)位置上,并直接寫出函數(shù)的解析式;
(2)若將函數(shù)的圖象上所有點的橫坐標(biāo)變?yōu)樵瓉淼?/span>倍,縱坐標(biāo)不變,得到函數(shù)的圖象,求當(dāng)時,函數(shù)的單調(diào)遞增區(qū)間;
(3)若將函數(shù)圖象上的所有點向右平移個單位長度,得到的圖象. 若圖象的一個對稱中心為,求的最小值.
【答案】(1)表格中①填:,;(2)和;(3).
【解析】
(1)利用 求得①求得中填寫的數(shù)值.根據(jù)表格所給數(shù)據(jù),求得的值.
(2)根據(jù)三角函數(shù)圖像變換的知識,求得的解析式,根據(jù)三角函數(shù)單調(diào)區(qū)間的求法,求得的單調(diào)遞增區(qū)間.
(3)根據(jù)三角函數(shù)圖像變換的知識,求得的解析式,根據(jù)的對稱中心列方程,由此求得的表達式,進而求得的最小值.
(1)依題意,故表格中①填:.由表格數(shù)據(jù)可知,,所以,所以,由,.
所以的解析式為:
(2) 令
和
即的單調(diào)遞增區(qū)間為和.
(3),
圖象的一個對稱中心為
即
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)數(shù)列{an}滿足.
(1)若,求證:存在(a,b,c為常數(shù)),使數(shù)列是等比數(shù)列,并求出數(shù)列{an}的通項公式;
(2)若an 是一個等差數(shù)列{bn}的前n項和,求首項a1的值與數(shù)列{bn}的通項公式.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在某親子游戲結(jié)束時有一項抽獎活動,抽獎規(guī)則是:盒子里面共有4個小球,小球上分別寫有0,1,2,3的數(shù)字,小球除數(shù)字外其他完全相同,每對親子中,家長先從盒子中取出一個小球,記下數(shù)字后將小球放回,孩子再從盒子中取出一個小球,記下小球上數(shù)字將小球放回.抽獎活動的獎勵規(guī)則是:①若取出的兩個小球上數(shù)字之積大于4,則獎勵飛機玩具一個;②若取出的兩個小球上數(shù)字之積在區(qū)間上,則獎勵汽車玩具一個;③若取出的兩個小球上數(shù)字之積小于1,則獎勵飲料一瓶.
(1)求每對親子獲得飛機玩具的概率;
(2)試比較每對親子獲得汽車玩具與獲得飲料的概率,哪個更大?請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)(,且).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)求函數(shù)在上的最大值.
【答案】(Ⅰ)的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.(Ⅱ)當(dāng)時, ;當(dāng)時, .
【解析】【試題分析】(I)利用的二階導(dǎo)數(shù)來研究求得函數(shù)的單調(diào)區(qū)間.(II) 由(Ⅰ)得在上單調(diào)遞減,在上單調(diào)遞增,由此可知.利用導(dǎo)數(shù)和對分類討論求得函數(shù)在不同取值時的最大值.
【試題解析】
(Ⅰ),
設(shè) ,則.
∵, ,∴在上單調(diào)遞增,
從而得在上單調(diào)遞增,又∵,
∴當(dāng)時, ,當(dāng)時, ,
因此, 的單調(diào)增區(qū)間為,單調(diào)減區(qū)間為.
(Ⅱ)由(Ⅰ)得在上單調(diào)遞減,在上單調(diào)遞增,
由此可知.
∵, ,
∴.
設(shè),
則 .
∵當(dāng)時, ,∴在上單調(diào)遞增.
又∵,∴當(dāng)時, ;當(dāng)時, .
①當(dāng)時, ,即,這時, ;
②當(dāng)時, ,即,這時, .
綜上, 在上的最大值為:當(dāng)時, ;
當(dāng)時, .
[點睛]本小題主要考查函數(shù)的單調(diào)性,考查利用導(dǎo)數(shù)求最大值. 與函數(shù)零點有關(guān)的參數(shù)范圍問題,往往利用導(dǎo)數(shù)研究函數(shù)的單調(diào)區(qū)間和極值點,并結(jié)合特殊點,從而判斷函數(shù)的大致圖像,討論其圖象與軸的位置關(guān)系,進而確定參數(shù)的取值范圍;或通過對方程等價變形轉(zhuǎn)化為兩個函數(shù)圖象的交點問題.
【題型】解答題
【結(jié)束】
22
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,圓的普通方程為. 在以坐標(biāo)原點為極點,軸正半軸為極軸的極坐標(biāo)系中,直線的極坐標(biāo)方程為 .
(Ⅰ) 寫出圓 的參數(shù)方程和直線的直角坐標(biāo)方程;
( Ⅱ ) 設(shè)直線 與軸和軸的交點分別為,為圓上的任意一點,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在一次“漢馬”(武漢馬拉松比賽的簡稱)全程比賽中,50名參賽選手(24名男選手和26名女選手)的成績(單位:分鐘)分別為數(shù)據(jù) (成績不為0).
(Ⅰ)24名男選手成績的莖葉圖如圖⑴所示,若將男選手成績由好到差編為1~24號,再用系統(tǒng)抽樣方法從中抽取6人,求其中成績在區(qū)間上的選手人數(shù);
(Ⅱ)如圖⑵所示的程序用來對這50名選手的成績進行統(tǒng)計.為了便于區(qū)別性別,輸入時,男選手的成績數(shù)據(jù)用正數(shù),女選手的成績數(shù)據(jù)用其相反數(shù)(負(fù)數(shù)),請完成圖⑵中空白的判斷框①處的填寫,并說明輸出數(shù)值和的統(tǒng)計意義.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某城市隨機抽取一年(365天)內(nèi)100天的空氣質(zhì)量指數(shù)的監(jiān)測數(shù)據(jù),結(jié)果統(tǒng)計如下:
記某企業(yè)每天由空氣污染造成的經(jīng)濟損失(單位:元),空氣質(zhì)量指數(shù)為.當(dāng)時,企業(yè)沒有造成經(jīng)濟損失;當(dāng)對企業(yè)造成經(jīng)濟損失成直線模型(當(dāng)時造成的經(jīng)濟損失為,當(dāng)時,造成的經(jīng)濟損失;當(dāng)時造成的經(jīng)濟損失為2000元;
(1)試寫出的表達式:
(2)在本年內(nèi)隨機抽取一天,試估計該天經(jīng)濟損失超過350元的概率;
(3)若本次抽取的樣本數(shù)據(jù)有30天是在供暖季,其中有12天為重度污染,完成下面列聯(lián)表,并判斷能否有的把握認(rèn)為該市本年空氣重度污染與供暖有關(guān)?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)是偶函數(shù).
(1)求k的值;
(2)若方程有實數(shù)根,求b的取值范圍;
(3)設(shè),若函數(shù)與的圖象有且只有一個公共點,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】平面直角坐標(biāo)系中,直線的參數(shù)方程為,(為參數(shù)).以原點為極點,軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(1)寫出直線的極坐標(biāo)方程與曲線的直角坐標(biāo)方程;
(2)已知與直線平行的直線過點,且與曲線交于兩點,試求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】【題目】已知拋物線C:y2=2x,過點(2,0)的直線l交C于A,B兩點,圓M是以線段AB為直徑的圓.
(1)證明:坐標(biāo)原點O在圓M上;
(2)設(shè)圓M過點P(4,-2),求直線l與圓M的方程.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com