【題目】已知函數(shù)存在極大值與極小值,且在處取得極小值.

(1)求實(shí)數(shù)的值;

(2)若函數(shù)有兩個(gè)零點(diǎn),求實(shí)數(shù)的取值范圍.

(參考數(shù)據(jù):

【答案】(1)(2)

【解析】

(1),,解得,當(dāng)時(shí),只有極小值,不符合題意.當(dāng)時(shí),,符合題意,由此能求出實(shí)數(shù)的值.

(2),當(dāng)時(shí),上單調(diào)遞增,當(dāng)時(shí),令,則,利用導(dǎo)數(shù)性質(zhì)能求出實(shí)數(shù)的取值范圍.

解:(1)函數(shù)存在極大值與極小值,且在處取得極小值,

,

依題意知,解得,

當(dāng)時(shí),,

時(shí),單調(diào)遞減;時(shí),單調(diào)遞增,

此時(shí),只有極小值,不符合題意.

當(dāng)時(shí),,

時(shí),,單調(diào)遞增;時(shí),單調(diào)遞減,

符合在處取得極小值的題意,

綜上,實(shí)數(shù)的值為

(2),,

當(dāng)時(shí),,故上單調(diào)遞增,

當(dāng)時(shí),令

,

單調(diào)遞增,

單調(diào)遞減,

,

時(shí),,故上單調(diào)遞減,

上有兩個(gè)零點(diǎn),,

此時(shí)當(dāng)時(shí),有一個(gè)零點(diǎn),

當(dāng)時(shí),

,,

有一個(gè)零點(diǎn),

綜上,實(shí)數(shù)的取值范圍是

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,已知直線lxy2=0,拋物線Cy2=2pxp0.

1)若直線l過拋物線C的焦點(diǎn),求拋物線C的方程;

2)已知拋物線C上存在關(guān)于直線l對(duì)稱的相異兩點(diǎn)PQ.

求證:線段PQ的中點(diǎn)坐標(biāo)為;

p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】位同學(xué)分成組,參加個(gè)不同的志愿者活動(dòng),每組至少人,其中甲乙人不能分在同一組,則不同的分配方案有_____種.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某超市從現(xiàn)有甲、乙兩種酸奶的日銷售量(單位:箱)的1200個(gè)數(shù)據(jù)(數(shù)據(jù)均在區(qū)間內(nèi))中,按照的比例進(jìn)行分層抽樣,統(tǒng)計(jì)結(jié)果按,,,分組,整理如下圖:

1)求頻率分布直方圖(圖乙)中的值,并估計(jì)1200個(gè)日銷售量中,數(shù)據(jù)在區(qū)間中的個(gè)數(shù).

2)從日銷售量在的甲種酸奶的數(shù)據(jù)樣本中抽取3個(gè),記在內(nèi)的數(shù)據(jù)個(gè)數(shù)為,求的分布列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某品牌電腦體驗(yàn)店預(yù)計(jì)全年購入臺(tái)電腦,已知該品牌電腦的進(jìn)價(jià)為/臺(tái),為節(jié)約資金決定分批購入,若每批都購入為正整數(shù))臺(tái),且每批需付運(yùn)費(fèi)元,儲(chǔ)存購入的電腦全年所付保管費(fèi)與每批購入電腦的總價(jià)值(不含運(yùn)費(fèi))成正比(比例系數(shù)為),若每批購入臺(tái),則全年需付運(yùn)費(fèi)和保管費(fèi).

1)記全年所付運(yùn)費(fèi)和保管費(fèi)之和為元,求關(guān)于的函數(shù).

2)若要使全年用于支付運(yùn)費(fèi)和保管費(fèi)的資金最少,則每批應(yīng)購入電腦多少臺(tái)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐PABC中,PAAB,PABC,ABBC,PAABBC=2,D為線段AC的中點(diǎn),E為線段PC上一點(diǎn).

(1)求證:PABD;

(2)求證:平面BDE平面PAC

(3)當(dāng)PA平面BDE時(shí),求三棱錐EBCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知數(shù)列,均為遞增數(shù)列,的前項(xiàng)和為,的前項(xiàng)和為.且滿足,,則下列說法正確的有( )

A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四色猜想是世界三大數(shù)學(xué)猜想之一,1976年數(shù)學(xué)家阿佩爾與哈肯證明,稱為四色定理.其內(nèi)容是:任意一張平面地圖只用四種顏色就能使具有共同邊界的國(guó)家涂上不同的顏色.”用數(shù)學(xué)語言表示為將平面任意地細(xì)分為不相重疊的區(qū)域,每一個(gè)區(qū)域總可以用1,2,34四個(gè)數(shù)字之一標(biāo)記,而不會(huì)使相鄰的兩個(gè)區(qū)域得到相同的數(shù)字.”如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗實(shí)線圍城的各區(qū)域上分別標(biāo)有數(shù)字1,2,34的四色地圖符合四色定理,區(qū)域和區(qū)域標(biāo)記的數(shù)字丟失.若在該四色地圖上隨機(jī)取一點(diǎn),則恰好取在標(biāo)記為1的區(qū)域的概率所有可能值中,最大的是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,圓的參數(shù)方程為為參數(shù)),以為極點(diǎn),軸的非負(fù)半軸為極軸建立極坐標(biāo)系,直線的極坐標(biāo)方程為

(1)求的極坐標(biāo)方程和直線的直角坐標(biāo)方程;

(2)射線與圓的交點(diǎn)為,,與直線的交點(diǎn)為,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案