13.雙曲線$\frac{x^2}{5}$-$\frac{{y{\;}^2}}{4}$=1的焦點(diǎn)坐標(biāo)為(  )
A.(3,0)和(-3,0)B.(2,0)和(-2,0)C.(0,3)和(0,-3)D.(0,2)和(0,-2)

分析 根據(jù)雙曲線的標(biāo)準(zhǔn)方程,求出a和b的值,可得c的值,即可求出雙曲線$\frac{x^2}{5}$-$\frac{{y{\;}^2}}{4}$=1的焦點(diǎn)坐標(biāo).

解答 解:雙曲線$\frac{x^2}{5}$-$\frac{{y{\;}^2}}{4}$=1中,a=$\sqrt{5}$,b=2,c=3,焦點(diǎn)坐標(biāo)是(±3,0).
故選:A.

點(diǎn)評(píng) 本題考查雙曲線$\frac{x^2}{5}$-$\frac{{y{\;}^2}}{4}$=1的焦點(diǎn)坐標(biāo),考查學(xué)生的計(jì)算能力,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.設(shè)集合A={x|x2+2x-3>0},B={x|x2-2ax-1≤0,a>0},若A∩B中恰有一個(gè)整數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(0,$\frac{3}{4}$)B.[$\frac{3}{4}$,$\frac{4}{3}$)C.$[\frac{3}{4},+∞)$D.(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知函數(shù)f(x)=mx3-3mx2(m∈R,m≠0).
(Ⅰ)求函數(shù)f(x)的單調(diào)增區(qū)間;
(Ⅱ)當(dāng)m>0,若函數(shù)g(x)=f(x)+1-m有三個(gè)零點(diǎn),求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.求下列函數(shù)的積分.
(1)${∫}_{0}^{1}$(x2+$\sqrt{x}$)dx;                   
(2)${∫}_{0}^{2}$$\sqrt{4-{x}^{2}}$dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知sinα=$\frac{5}{13}$,α是第一象限角,則cos(π-α)的值為$-\frac{12}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.若$\overrightarrow{a}$=(4,3),$\overrightarrow$=(-5,12),則$\overrightarrow{a}$在$\overrightarrow$上的投影為$\frac{16}{13}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.(1+x)4+(1+x)5+…+(1+x)9展開(kāi)式中,x3項(xiàng)的系數(shù)為209.(用數(shù)字作答)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知A={x||x-1|≤2},B={x|x-a>0},若A∪B=B,則實(shí)數(shù)a的取值范圍是(-∞,-1).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知不等式ax2+2x+c>0的解集為{x|-$\frac{1}{3}$<x<$\frac{1}{2}$}.
(Ⅰ)求a、c的值;
(Ⅱ)解不等式cx2-2x+a<0.

查看答案和解析>>

同步練習(xí)冊(cè)答案