19.若函數(shù)$y=sin({2x+φ})({0<φ<\frac{π}{2}})$的圖象的對稱中心在區(qū)間$({\frac{π}{6},\frac{π}{3}})$內(nèi)有且只有一個,則φ的值可以是( 。
A.$\frac{π}{12}$B.$\frac{π}{6}$C.$\frac{π}{3}$D.$\frac{5π}{12}$

分析 根據(jù)正弦函數(shù)圖象的對稱中心是(kπ,0),求出φ的表達(dá)式,再根據(jù)題意求出φ的取值范圍,即可得出φ的一個可能取值.

解答 解:根據(jù)題意,令2x+φ=kπ,k∈Z,
得φ=kπ-2x,k∈Z;
又函數(shù)f(x)圖象的對稱中心在區(qū)間($\frac{π}{6}$,$\frac{π}{3}$)內(nèi),
∴-2x∈(-$\frac{2π}{3}$,-$\frac{π}{3}$),
∴kπ-2x∈(kπ-$\frac{2π}{3}$,kπ-$\frac{π}{3}$),k∈Z;
當(dāng)k=1時,φ∈($\frac{π}{3}$,$\frac{2π}{3}$),
又0<φ<$\frac{π}{2}$,
∴φ的一個可能取值是$\frac{5π}{12}$.
故選:D.

點評 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.已知函數(shù)f(x)=x2+|x|-|x-5|+2.
(1)求不等式f(x)<0的解集;
(2)若關(guān)于x的不等式|f(x)|≤m的整數(shù)解僅有11個,求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.下列命題正確的是(  )
A.?x0∈R,sinx0+cosx0=$\frac{3}{2}$
B.?x≥0且x∈R,2x>x2
C.已知a,b為實數(shù),則a>2,b>2是ab>4的充分條件
D.已知a,b為實數(shù),則a+b=0的充要條件是$\frac{a}$=-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.如圖,在四棱錐P-ABCD中,PA⊥平面ABCD,底面ABCD為菱形,AB=1,$∠ABC=\frac{π}{3}$,E為PD中點,PA=1.
(I)求證:PB∥平面AEC;
(Ⅱ)在棱PC上是否存在點M,使得直線PC⊥平面BMD?若存在,求出點M的位置;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.歐拉(Leonhard  Euler,國籍瑞士)是科學(xué)史上最多產(chǎn)的一位杰出的數(shù)學(xué)家,他發(fā)明的公式eix=cosx+isinx(i為虛數(shù)單位),將指數(shù)函數(shù)的定義域擴(kuò)大到復(fù)數(shù),建立了三角函數(shù)和指數(shù)函數(shù)的關(guān)系,這個公式在復(fù)變函數(shù)理論中占有非常重要的地位,被譽為“數(shù)學(xué)中的天橋”.根據(jù)此公式可知,表示的復(fù)數(shù)e-iπ在復(fù)平面內(nèi)位于
( 。
A.第一象限B.在實數(shù)軸上C.第三象限D.第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.如圖,在四棱錐P-ABCD中,四邊形ABCD為平行四邊形,AC、BD相交于點O,點E、F、G分別為PC、AD、PD的中點,OP=OA,PA⊥PD.
求證:(1)FG∥平面BDE;
(2)平面BDE⊥平面PCD.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.已知α∈(0,$\frac{π}{2}$),sin2α=$\frac{1}{2}$,則sin($α+\frac{π}{4}$)=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.若雙曲線焦距是8,且經(jīng)過點(-$\frac{7}{3}$,4),則焦點在y軸上的雙曲線的標(biāo)準(zhǔn)方程是$\frac{{y}^{2}}{9}-\frac{{x}^{2}}{7}=1$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知x,y滿足$\left\{\begin{array}{l}{x-1≤0}\\{y-2≤0}\\{2x+y-2>0}\end{array}\right.$若$\overrightarrow{m}$=(x+1,y)則$\sqrt{{\overrightarrow{m}}^{2}}$的取值范圍為( 。
A.(15,2)B.($\frac{29}{2}$,2$\sqrt{2}$)C.(17,2$\sqrt{2}$)D.($\frac{4\sqrt{5}}{5}$,2$\sqrt{2}$]

查看答案和解析>>

同步練習(xí)冊答案