A. | $\frac{π}{12}$ | B. | $\frac{π}{6}$ | C. | $\frac{π}{3}$ | D. | $\frac{5π}{12}$ |
分析 根據(jù)正弦函數(shù)圖象的對稱中心是(kπ,0),求出φ的表達(dá)式,再根據(jù)題意求出φ的取值范圍,即可得出φ的一個可能取值.
解答 解:根據(jù)題意,令2x+φ=kπ,k∈Z,
得φ=kπ-2x,k∈Z;
又函數(shù)f(x)圖象的對稱中心在區(qū)間($\frac{π}{6}$,$\frac{π}{3}$)內(nèi),
∴-2x∈(-$\frac{2π}{3}$,-$\frac{π}{3}$),
∴kπ-2x∈(kπ-$\frac{2π}{3}$,kπ-$\frac{π}{3}$),k∈Z;
當(dāng)k=1時,φ∈($\frac{π}{3}$,$\frac{2π}{3}$),
又0<φ<$\frac{π}{2}$,
∴φ的一個可能取值是$\frac{5π}{12}$.
故選:D.
點評 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,是基礎(chǔ)題目.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ?x0∈R,sinx0+cosx0=$\frac{3}{2}$ | |
B. | ?x≥0且x∈R,2x>x2 | |
C. | 已知a,b為實數(shù),則a>2,b>2是ab>4的充分條件 | |
D. | 已知a,b為實數(shù),則a+b=0的充要條件是$\frac{a}$=-1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 在實數(shù)軸上 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (15,2) | B. | ($\frac{29}{2}$,2$\sqrt{2}$) | C. | (17,2$\sqrt{2}$) | D. | ($\frac{4\sqrt{5}}{5}$,2$\sqrt{2}$] |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com