【題目】若函數(shù)y=x2﹣2x+3,在(﹣∞,m)上單調(diào)遞減,則m的取值范圍 .
【答案】(﹣∞,1]
【解析】解答∵函數(shù)f(x)=x2﹣2x+3的圖象是開口方向朝上,
以直線x=1為對(duì)稱軸的拋物線,
若函數(shù)f(x)在(﹣∞,m)上單調(diào)遞減,
則1≥m
即m≤1
所以答案是:(﹣∞,1].
由函數(shù)f(x)的解析式,結(jié)合二次函數(shù)的圖象和性質(zhì),我們可以判斷出函數(shù)圖象的形狀及單調(diào)區(qū)間,再由函數(shù)f(x)在(﹣∞,m)上單調(diào)遞減,我們易構(gòu)造一個(gè)關(guān)于m的不等式,解不等式即可得到結(jié)論.
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解函數(shù)單調(diào)性的性質(zhì)的相關(guān)知識(shí),掌握函數(shù)的單調(diào)區(qū)間只能是其定義域的子區(qū)間 ,不能把單調(diào)性相同的區(qū)間和在一起寫成其并集.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】甲、乙、丙、丁四位同學(xué)參加朗讀比賽,其中只有一位獲獎(jiǎng),有同學(xué)走訪這四位同學(xué),甲說:“是乙或丙獲獎(jiǎng)”,乙說:“甲、丙都未獲獎(jiǎng)”,丙說:“我獲獎(jiǎng)了”,丁說:“是乙獲獎(jiǎng)了”。若四位同學(xué)中只有兩人說的話是對(duì)的,則獲獎(jiǎng)的同學(xué)是( )
A. 甲 B. 乙 C. 丙 D. 丁
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于直線m、n和平面α,下面命題中的真命題是( )
A.如果mα,nα,m、n是異面直線,那么n∥α
B.如果mα,n與α相交,那么m、n是異面直線
C.如果mα,n∥α,m、n共面,那么m∥n
D.如果m∥α,n∥α,m、n共面,那么m∥n
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】函數(shù)y=|2x﹣1|在區(qū)間(k﹣1,k+1)上不單調(diào),則k的取值范圍( )
A.(﹣1,+∞)
B.(﹣∞,1)
C.(﹣1,1)
D.(0,2)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)滿足f(x+1)+f(x﹣1)=﹣2x2+4x ,
(1)求f(x)解析式;
(2)求當(dāng)x∈[a,a+2],時(shí),f(x)最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知f(x+1)=x2﹣5x+4,則f(x)等于( )
A.x2﹣5x+3
B.x2﹣7x+10
C.x2﹣7x﹣10
D.x2﹣4x+6
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com