8.在△ABC中,若a=$\sqrt{3}$,b=$\sqrt{2}$,A=120°,則B的大小為45°.

分析 由已知及正弦定理可得sinB,結(jié)合b<a,B為銳角,即可得解B的值.

解答 解:∵a=$\sqrt{3}$,b=$\sqrt{2}$,A=120°,
∴由正弦定理$\frac{a}{sinA}=\frac{sinB}$,可得:sinB=$\frac{b•sinA}{a}$=$\frac{\sqrt{2}×\frac{\sqrt{3}}{2}}{\sqrt{3}}$=$\frac{\sqrt{2}}{2}$,
∵b<a,B為銳角,
∴B=45°.
故答案為:45°.

點(diǎn)評(píng) 本題主要考查了正弦定理在解三角形中的應(yīng)用,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知實(shí)數(shù)a,b滿足($\frac{1}{2}$)a<($\frac{1}{2}$)b,則(  )
A.a${\;}^{\frac{1}{3}}$>b${\;}^{\frac{1}{3}}$B.log2a>log2bC.$\frac{1}{a}$<$\frac{1}$D.sina>sinb

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)命題P:?x>0,x2≤1,則¬P為( 。
A.?x>0,x2<1B.?x>0,x2>1C.?x>0,x2>1D.?x>≤0,x2≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.下列命題中的真命題是( 。
A.若a>|b|,則a2>b2B.若|a|>b,則a2>b2
C.若a≥b,則a2≥b2D.若a>b,c>d,則ac>bd

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.對(duì)具有線性相關(guān)關(guān)系的變量x,y,測(cè)得一組數(shù)據(jù)如下:
x24568
y2040607080
根據(jù)以上數(shù)據(jù),利用最小二乘法得它們的回歸直線方程為$\stackrel{∧}{y}$=10.5x+$\stackrel{∧}{a}$,據(jù)此模型來預(yù)測(cè)當(dāng)x=20時(shí),y的估計(jì)值為211.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.設(shè)等比數(shù)列{an}的公比q,前n項(xiàng)和為Sn.若S3,S2,S4成等差數(shù)列,則實(shí)數(shù)q的值為-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.下列說法正確的是(  )
A.若$\overrightarrow{a}$,$\overrightarrow$都是單位向量,則$\overrightarrow{a}$=$\overrightarrow$
B.方向相同或相反的非零向量叫做共線向量
C.若$\overrightarrow a\;∥\;\overrightarrow b$,$\overrightarrow b\;∥\;\overrightarrow c$,則$\overrightarrow a\;∥\;\overrightarrow c$不一定成立
D.若$\overrightarrow{AB}=\overrightarrow{DC}$,則A,B,C,D四點(diǎn)構(gòu)成一個(gè)平行四邊形

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.設(shè)數(shù)列{an}滿足a1=2,an+1=1-$\frac{2}{{a}_{n}+1}$,記數(shù)列{an}的前n項(xiàng)之積為Tn,則T2018=( 。
A.1B.2C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.在等比數(shù)列{an}中,a1=1,則“a2=4”是“a3=16”的充分不必要條件.

查看答案和解析>>

同步練習(xí)冊(cè)答案