13.已知圓O為單位圓:x2+y2=1,點(diǎn)A(1,0),B為單位圓上的動(dòng)點(diǎn),如圖,以AB為邊作正方形ABCD,求動(dòng)點(diǎn)D的軌跡方程及OD的取值范圍.

分析 找出點(diǎn)D,B坐標(biāo)之間的關(guān)系,利用B為單位圓上的動(dòng)點(diǎn),求動(dòng)點(diǎn)D的軌跡方程,利用圓的性質(zhì)求出OD的取值范圍.

解答 解:如圖所示,過(guò)B作BF⊥x軸,DE⊥x軸,則△ABF≌△DAE,
∴AE=BF,AE=DE,
設(shè)D(x,y),則B(1-y,x-1),
∵B為單位圓上的動(dòng)點(diǎn),
∴(1-y)2+(x-1)2=1,即(x-1)2+(y-1)2=1,
圓心(1,1)到原點(diǎn)的距離為$\sqrt{2}$,
∴OD的取值范圍是($\sqrt{2}$-1,$\sqrt{2}$+1).

點(diǎn)評(píng) 本題考查圓的方程,考查代入法求軌跡方程,正確轉(zhuǎn)化是關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.如圖,已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左焦點(diǎn)為F,過(guò)F作斜率為1的直線交雙曲線的漸近線于A,B兩點(diǎn),且|OB|=2|OA|,則該雙曲線的離心率為$\sqrt{10}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}滿足:a1=3,an+1=an2-nan+1.
(Ⅰ)求a2,a3,a4的值;
(Ⅱ)猜測(cè)an與n+2的關(guān)系,并用數(shù)學(xué)歸納法證明.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

1.打撲克的趙、錢(qián)、孫、李四家各從一副撲克的52張(去掉兩張王牌后)中隨機(jī)抽取13張,A=“趙家沒(méi)得到2”,B=“孫家得到1張2”.
(1)計(jì)算P(B|A);
(2)計(jì)算P(A|B);
(3)計(jì)算P(A∩B);
(4)計(jì)算P(A∪B).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

8.已知圓O:x2+y2=9,點(diǎn)A(2,0),點(diǎn)P為動(dòng)點(diǎn),以線段AP為直徑的圓內(nèi)切于圓O,則動(dòng)點(diǎn)P的軌跡方程是$\frac{{x}^{2}}{9}$+$\frac{{y}^{2}}{5}$=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

18.如圖,在平面直角坐標(biāo)系xOy中,橢圓E的方程為$\frac{{x}^{2}}{6}$+$\frac{{y}^{2}}{3}$=1,直線l:y=$\frac{1}{2}$x與橢圓E相交于A,B兩點(diǎn),C,D是橢圓E上異于A,B兩點(diǎn),且直線AC,BD相交于點(diǎn)M,直線AD,BC相交于點(diǎn)N,求證:直線MN的斜率為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{x}{1+x}$,數(shù)列{an}滿足a1=a(a為常數(shù),且a>0),an+1=f(an),n∈N*
(Ⅰ)計(jì)算a2,a3,a4,并由此猜想出數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)用數(shù)學(xué)歸納法證明你的猜想.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在中心角為60°,半徑為1的扇形OAB的半徑OB上任取一點(diǎn)M,作內(nèi)接矩形MNPQ,設(shè)∠QOA=θ,矩形MNPQ的面積為S.
(1)求S關(guān)于θ的函數(shù)解析式;
(2)求S的最大值;
(3)如果分別在OA,OB上任取一點(diǎn)C、D,使OC=OD,按如圖方式作扇形的內(nèi)接矩形CDEF,設(shè)該矩形的面積為S′,問(wèn)S′的最大值與S的最大值,哪一個(gè)更大,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2016-2017學(xué)年山西忻州一中高一上學(xué)期新生摸底數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,是有公共頂點(diǎn)的等腰直角三角形,,點(diǎn)為射線與射線的交點(diǎn).

(1)求證:;

(2)若,把繞點(diǎn)旋轉(zhuǎn),

①當(dāng)時(shí),求的長(zhǎng);

②直接寫(xiě)出旋轉(zhuǎn)過(guò)程中線段長(zhǎng)的最小值與最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案