【題目】如圖,已知橢圓的左頂點(diǎn)為,過右焦點(diǎn)的直線交橢圓于,兩點(diǎn),直線,分別交直線于點(diǎn),.
(1)試判斷以線段為直徑的圓是否過點(diǎn),并說明理由;
(2)記,,的斜率分別為,,,證明:,,成等差數(shù)列.
【答案】(1)以線段為直徑的圓過點(diǎn),理由見解析;(2)證明見解析.
【解析】
(1)設(shè)直線斜率為,求出點(diǎn)坐標(biāo),聯(lián)立直線與橢圓的方程,利用韋達(dá)定理解出的坐標(biāo),同理可得設(shè)直線斜率為,求出點(diǎn)坐標(biāo),根據(jù)三點(diǎn)共線,,得出兩條直線斜率關(guān)系,再通過計(jì)算得出,即可得證;
(2)根據(jù)第一問所求點(diǎn)的坐標(biāo)及斜率關(guān)系計(jì)算出,化簡(jiǎn)即可得證.
(1)以線段為直徑的圓過點(diǎn),證明如下:
由題意知直線斜率存在且不為零,
設(shè)直線斜率分別為,設(shè),直線方程為,則點(diǎn)坐標(biāo)為
聯(lián)立直線與橢圓的方程:
,整理得:,其根為兩點(diǎn)橫坐標(biāo),
根據(jù)韋達(dá)定理,
所以,
即點(diǎn)的坐標(biāo).
同理可得設(shè)直線斜率分別為,點(diǎn)坐標(biāo)為
解得點(diǎn)的坐標(biāo)為
三點(diǎn)共線,,即
,
所以,即以線段為直徑的圓過點(diǎn);
(2)由(1)可得,,
,
所以,,成等差數(shù)列.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某校從名教師中選派名教師去完成項(xiàng)不同的工作,每人至少完成一項(xiàng),每項(xiàng)工作由人完成,其中甲和乙不同去,甲和丙只能同去或同不去,則不同的選派方案種數(shù)是( )
A. B. C. D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】總體由編號(hào)為01,02,03,,49,50的50個(gè)個(gè)體組成,利用隨機(jī)數(shù)表(以下選取了隨機(jī)數(shù)表中的第1行和第2行)選取5個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表第1行的第9列和第10列數(shù)字開始由左向右讀取,則選出來的第4個(gè)個(gè)體的編號(hào)為( )
78 16 65 72 08 02 63 14 07 02 43 69 69 38 74 |
32 04 94 23 49 55 80 20 36 35 48 69 97 28 01 |
A. 05 B. 09 C. 07 D. 20
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四棱錐中,平面 平面,底面是邊長(zhǎng)為2的正方形,且,.
(Ⅰ)證明:;
(Ⅱ)求平面與平面所成二面角的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】選修4-4:坐標(biāo)系與參數(shù)方程
在直角坐標(biāo)系中,直線的參數(shù)方程為(為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.
(Ⅰ)求和的直角坐標(biāo)方程;
(Ⅱ)若曲線截直線所得線段的中點(diǎn)坐標(biāo)為,求的斜率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),用定義證明函數(shù)在定義域上的單調(diào)性;
(2)若函數(shù)是偶函數(shù),
(i)求的值;
(ii)設(shè),若方程只有一個(gè)解,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知向量,函數(shù).
(1)將函數(shù)的圖像向右平移m()個(gè)單位長(zhǎng)度,所得圖像對(duì)應(yīng)的函數(shù)為奇函數(shù),寫出m的最小值(不要求寫過程);
(2)若,,求的值;
(3)若函數(shù)()在區(qū)間上是單調(diào)遞增函數(shù),求正數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了適應(yīng)高考改革,某中學(xué)推行“創(chuàng)新課堂”教學(xué).高一平行甲班采用“傳統(tǒng)教學(xué)”的教學(xué)方式授課,高一平行乙班采用“創(chuàng)新課堂”的教學(xué)方式授課,為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班中各隨機(jī)抽取名學(xué)生的成績(jī)進(jìn)行統(tǒng)計(jì)分析,結(jié)果如下表:(記成績(jī)不低于分者為“成績(jī)優(yōu)秀”)
分?jǐn)?shù) | |||||||
甲班頻數(shù) | |||||||
乙班頻數(shù) |
(1)由以上統(tǒng)計(jì)數(shù)據(jù)填寫下面的列聯(lián)表,并判斷是否有以上的把握認(rèn)為“成績(jī)優(yōu)秀與教學(xué)方式有關(guān)”?
甲班 | 乙班 | 總計(jì) | |
成績(jī)優(yōu)秀 | |||
成績(jī)不優(yōu)秀 | |||
總計(jì) |
(2)在上述樣本中,學(xué)校從成績(jī)?yōu)?/span>的學(xué)生中隨機(jī)抽取人進(jìn)行學(xué)習(xí)交流,求這人來自同一個(gè)班級(jí)的概率.
參考公式:,其中.
臨界值表
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com