4.求證雙曲線$y=\frac{1}{x}$上任意一點(diǎn)P處的切線與與兩坐標(biāo)軸圍成的三角形面積為定值.

分析 求得切線方程,分別令x=0,求得B點(diǎn)坐標(biāo),當(dāng)y=0時(shí),求得A點(diǎn)坐標(biāo),根據(jù)三角形的面積公式,即可求得與兩坐標(biāo)軸圍成的三角形面積為定值.

解答 解:證明:設(shè)曲線$y=\frac{1}{x}$上任意一點(diǎn)為P(x0,$\frac{1}{{x}_{0}}$),∵y′=-$\frac{1}{{x}^{2}}$,
∴在點(diǎn)P處切線的斜率k=-$\frac{1}{{x}_{0}^{2}}$,
∴在P點(diǎn)處的切線方程為y-$\frac{1}{{x}_{0}}$=-$\frac{1}{{x}_{0}^{2}}$(x-x0).
令x=0,得y=$\frac{1}{{x}_{0}}$+$\frac{1}{{x}_{0}}$=$\frac{2}{{x}_{0}}$,則B(0,$\frac{2}{{x}_{0}}$)
令y=0,得x=x0+x02×$\frac{1}{{x}_{0}}$=2x0,C(2x0,0),
∴S=$\frac{1}{2}$|x|•|y|=2.
故三角形面積為定值2.
過P處的切線與與兩坐標(biāo)軸圍成的三角形面積為定值2.

點(diǎn)評 本題考查利用導(dǎo)數(shù)求函數(shù)的切線方程,考查計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.設(shè)f(x)是定義在R上且周期為1的函數(shù),在區(qū)間[0,1)上,f(x)=$\left\{\begin{array}{l}{{x}^{2},x∈D}\\{x,x∉D}\end{array}\right.$,其中集合D={x|x=$\frac{n-1}{n}$,n∈N*},則方程f(x)-lgx=0的解的個(gè)數(shù)是8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知函數(shù)f(x)=lnx+ax2+(2a+1)x.
(1)討論f(x)的單調(diào)性;
(2)當(dāng)a<0時(shí),證明f(x)≤-$\frac{3}{4a}$-2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

8.一批產(chǎn)品的二等品率為0.02,從這批產(chǎn)品中每次隨機(jī)取一件,有放回地抽取100次.X表示抽到的二等品件數(shù),則DX=1.96.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖,網(wǎng)格紙上小正方形的邊長為1,粗實(shí)線畫出的是某幾何體的三視圖,該幾何體由一平面將一圓柱截去一部分后所得,則該幾何體的體積為( 。
A.90πB.63πC.42πD.36π

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.已知橢圓x2+my2=1的焦距為$\sqrt{3}$,則m=4或$\frac{4}{7}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知數(shù)列{an}滿足a1=$\frac{1}{5}$,且當(dāng)n>1,n∈N*時(shí),有an-1-an-4an-1•an=0.
(1)求證:數(shù)列$\left\{{\frac{1}{a_n}}\right\}$為等差數(shù)列,并求出數(shù)列{an}的通項(xiàng)公式;
(2)令bn=an•an+1,設(shè)數(shù)列{bn}的前n項(xiàng)和為Sn,證明:${S_n}<\frac{1}{20}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知多項(xiàng)式(x+1)3(x+2)2=x5+a1x4+a2x3+a3x2+a4x+a5,則a4=16,a5=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知奇函數(shù)f(x)在R上是增函數(shù),g(x)=xf(x).若a=g(-log25.1),b=g(20.8),c=g(3),則a,b,c的大小關(guān)系為( 。
A.a<b<cB.c<b<aC.b<a<cD.b<c<a

查看答案和解析>>

同步練習(xí)冊答案