【題目】如圖,在四棱錐平面ABCD,,EPD的中點,FAD上且

1)求證:CE//平面PAB;

2)若PA=2AB=2,求四面體PACE的體積.

【答案】1)見解析;(2

【解析】

試題(1∵∠ABC∠ACD90°,∠BAC∠CAD60°

∴∠FDC30°.又∠FCD30°,∴∠ACF60°,

∴AFCFDF,FAD的中點. 3

EPD的中點,∴EF∥PA

AP平面PAB,∴EF∥平面PAB

∠BAC∠ACF60°

∴CF∥AB,可得CF∥平面PAB

EF∩CFF,

平面CEF∥平面PAB,而CE平面CEF

∴CE∥平面PAB 6

2∵EF∥AP∴EF∥平面APC

∠ABC∠ACD90°∠BAC60°PA2AB2

∴AC2AB2, 9

12

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】以原點O為極點,x軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線C的極坐標(biāo)方程為,a為常數(shù))),過點、傾斜角為的直線的參數(shù)方程滿足,(為參數(shù)).

(1)求曲線C的普通方程和直線的參數(shù)方程;

(2)若直線與曲線C相交于A、B兩點(點P在A、B之間),且,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù).

(1)討論函數(shù)的極值;

(2)若為整數(shù),,,不等式成立,求的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知圓的參數(shù)方程為(其中為參數(shù)),以原點為極點,軸非負(fù)半軸為極軸建立極坐標(biāo)系,則曲線的極坐標(biāo)方程為.

1)求圓的普通方程與的直角坐標(biāo)方程;

2)點是曲線上一點,由向圓引切線,切點分別為,求四邊形面積的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱中,,的中點,.

(1)求證:平面

(2)若異面直線所成角的余弦值為,求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某人某天的工作是駕車從地出發(fā),到兩地辦事,最后返回地,,三地之間各路段行駛時間及擁堵概率如下表

路段

正常行駛所用時間(小時)

上午擁堵概率

下午擁堵概率

1

03

06

2

02

07

3

03

09

若在某路段遇到擁堵,則在該路段行駛時間需要延長1小時.

現(xiàn)有如下兩個方案:

方案甲:上午從地出發(fā)到地辦事然后到達(dá)地,下午從地辦事后返回地;

方案乙:上午從地出發(fā)到地辦事,下午從地出發(fā)到達(dá)地,辦完事后返回地.

1)若此人早上8點從地出發(fā),在各地辦事及午餐的累積時間為2小時,且采用方案甲,求他當(dāng)日18點或18點之前能返回地的概率.

2)甲乙兩個方案中,哪個方案有利于辦完事后更早返回地?請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)=lnx+ax2+(2a+1)x

(1)討論的單調(diào)性;

(2)當(dāng)a﹤0時,證明

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

1)求單調(diào)區(qū)間與極值;

2)當(dāng)函數(shù)有兩個極值點時,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在底面為直角梯形的四棱錐P-ABCD中,AD∥BC,∠ABC=90°,PA⊥平面ABCD,PA=3,AD=2,AB=2,BC=6.

(1)求證:BD平面PAC; (2)求二面角P-BD-A的大小.

查看答案和解析>>

同步練習(xí)冊答案