分析 (Ⅰ)根據(jù)BF∥CD便有∠EDC=∠BFD,再根據(jù)同一條弦所對(duì)的圓周角相等即可得出∠EBC=∠BFD,∠BCE=∠BDF,這樣即可得出:△BCE與△FDB相似;
(Ⅱ)根據(jù)條件便可得出∠EBC=∠FBD,再由上面即可得出∠FBD=∠BFD,這樣即可得出△FDB為等腰直角三角形,從而可求出BD=$\sqrt{2}$,根據(jù)射影定理即可求出AD•ED的值.
解答 解:
(Ⅰ)證明:∵BF∥CD;
∴∠EDC=∠BFD,
又∠EBC=∠EDC,
∴∠EBC=∠BFD,
又∠BCE=∠BDF,
∴△BCE∽△FDB.
(Ⅱ)因?yàn)椤螮BF=∠CBD,所以∠EBC=∠FBD,
由(Ⅰ)得∠EBC=∠BFD,所以∠FBD=∠BFD,
又因?yàn)锽E為圓O的直徑,
所以△FDB為等腰直角三角形,BD=$\frac{\sqrt{2}}{2}$BF=$\sqrt{2}$,
因?yàn)锳B與圓O相切于B,所以EB⊥AB,即AD•ED=BD2=2.
點(diǎn)評(píng) 考查內(nèi)錯(cuò)角相等,同條弦所對(duì)的圓周角相等,以及三角形相似的判定定理,直徑所對(duì)的圓周角為直角,以及射影定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{2\sqrt{5}}{5}$ | B. | $\frac{\sqrt{5}}{5}$ | C. | $\frac{1}{5}$ | D. | $\frac{2\sqrt{5}}{25}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {3,7} | B. | {(3,7)} | C. | (3,7) | D. | [3,7] |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 充分非必要條件 | B. | 必要非充分條件 | ||
C. | 充要條件 | D. | 既非充分又非必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{3}{2}$ | B. | 2 | C. | 3 | D. | 9 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com