3.設(shè)函數(shù)f(x)=x+ax2+blnx,曲線y=f(x)過P(1,0),且在P點處的切線斜率為2
(1)求a,b的值;
(2)設(shè)函數(shù)g(x)=f(x)-2x+2,求g(x)在其定義域上的最值.

分析 (1)求出f(x)的導(dǎo)數(shù),由題意可得f(1)=0,f′(1)=2,解方程可得a,b的值;
(2)求得f(x),g(x)的解析式,求出導(dǎo)數(shù),求得單調(diào)區(qū)間和極值、最值

解答 解:(1)f(x)=x+ax2+blnx的導(dǎo)數(shù)f′(x)=1+2a+$\frac{x}$(x>0),
由題意可得f(1)=1+a=0,f′(1)=1+2a+b=2,
得 $\left\{\begin{array}{l}{a=-1}\\{b=3}\end{array}\right.$;
(2)證明:f(x)=x-x2+3lnx,g(x)=f(x)-2x+2=3lnx-x2-x+2(x>0),g′(x)=$\frac{3}{x}$-2x-1=-$\frac{(2x+3)(x-1)}{x}$,

x(0,1)1(1,+∞)
g′(x)+0-
g(x)極大值
∴g(x)在(0,1)遞增,在(1,+∞)遞減,
可得g(x)max=g(1)=-1-1+2=0,無最小值.

點評 本題考查導(dǎo)數(shù)的運用:求切線的斜率和單調(diào)區(qū)間、極值和最值,考查運算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.設(shè)p:l<x<2,q:2x>1,則P是q成立的( 。
A.必要不充分條件B.充分不必要條件
C.充分必要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.設(shè)向量$\overrightarrow{a}$=(sin$\frac{π}{2}$x,cos$\frac{π}{2}$x),$\overrightarrow$=(sin$\frac{π}{2}$x,$\sqrt{3}$sin$\frac{π}{2}$x),x∈R,函數(shù)f(x)=$\overrightarrow{a}•(\overrightarrow{a}+2\overrightarrow)$,求:
(1)f(x)的最小正周期;
(2)f(x)在區(qū)間[0,1]上的最大值和最小值,以及取得最大值和最小值時x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一條漸近線過點(-3,4),則該雙曲線的離心率是( 。
A.$\frac{5}{3}$B.$\frac{5}{4}$C.$\frac{4}{3}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下面使用類比推理正確的是(  )
A.”loga(x•y)=logax+logay“類比推出“sin(x•y)=sinx+siny“
B.“(a+b)•c=ac+bc”類比推出“(a•b)•c=ac•bc”
C.“(a+b)•c=ac+bc”類比推出“$\frac{a+b}{c}$=$\frac{a}{c}+\frac{c}$(c≠0)“
D.“(a•b)•c=a•(b•c)“類比推出“($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)“

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.設(shè)圓x2+y2-2x-15=0的圓心為F1,直線l過點F2(-1,0)且交圓F1于P,Q兩點,線段PF2的垂直平分線交線段PF1于M點.
(1)證明|MF1|+|MF2|為定值,并寫出點M的軌跡方程;
(2)設(shè)點M的軌跡為T,T與x軸交點為A,B,直線l與T交于C,D兩點,記△ABD與△ABC的面積分別為S1和S2,求|S1-S2|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.在(1+x)+(1+x) 2+(1+x) 3+…+(1+x) 9的展開式中,x2的系數(shù)等于( 。
A.121B.120C.84D.45

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.(1)用分析法證明:$\sqrt{6}$+$\sqrt{5}$$>2\sqrt{2}$$+\sqrt{3}$;
(2)用反證法證明:$\sqrt{2}$,$\sqrt{5}$,$\sqrt{6}$不可能成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.如圖,AB與圓O相切于點B,CD為圓O上兩點,延長AD交圓O于點E,BF∥CD且交ED于點F
(I)證明:△BCE∽△FDB;
(Ⅱ)若BE為圓O的直徑,∠EBF=∠CBD,BF=2,求AD•ED.

查看答案和解析>>

同步練習(xí)冊答案