分析 (1)求出f(x)的導(dǎo)數(shù),由題意可得f(1)=0,f′(1)=2,解方程可得a,b的值;
(2)求得f(x),g(x)的解析式,求出導(dǎo)數(shù),求得單調(diào)區(qū)間和極值、最值
解答 解:(1)f(x)=x+ax2+blnx的導(dǎo)數(shù)f′(x)=1+2a+$\frac{x}$(x>0),
由題意可得f(1)=1+a=0,f′(1)=1+2a+b=2,
得 $\left\{\begin{array}{l}{a=-1}\\{b=3}\end{array}\right.$;
(2)證明:f(x)=x-x2+3lnx,g(x)=f(x)-2x+2=3lnx-x2-x+2(x>0),g′(x)=$\frac{3}{x}$-2x-1=-$\frac{(2x+3)(x-1)}{x}$,
x | (0,1) | 1 | (1,+∞) |
g′(x) | + | 0 | - |
g(x) | ↗ | 極大值 | ↘ |
點評 本題考查導(dǎo)數(shù)的運用:求切線的斜率和單調(diào)區(qū)間、極值和最值,考查運算能力.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 必要不充分條件 | B. | 充分不必要條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{5}{3}$ | B. | $\frac{5}{4}$ | C. | $\frac{4}{3}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ”loga(x•y)=logax+logay“類比推出“sin(x•y)=sinx+siny“ | |
B. | “(a+b)•c=ac+bc”類比推出“(a•b)•c=ac•bc” | |
C. | “(a+b)•c=ac+bc”類比推出“$\frac{a+b}{c}$=$\frac{a}{c}+\frac{c}$(c≠0)“ | |
D. | “(a•b)•c=a•(b•c)“類比推出“($\overrightarrow{a}$•$\overrightarrow$)•$\overrightarrow{c}$=$\overrightarrow{a}$•($\overrightarrow$•$\overrightarrow{c}$)“ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 121 | B. | 120 | C. | 84 | D. | 45 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com