4.已知α,β均為銳角,且cosα=$\frac{2\sqrt{5}}{5}$,sin(α-β)=-$\frac{3}{5}$,則sinβ的值為(  )
A.$\frac{2\sqrt{5}}{5}$B.$\frac{\sqrt{5}}{5}$C.$\frac{1}{5}$D.$\frac{2\sqrt{5}}{25}$

分析 利用同角三角函數(shù)的基本關系求得 sinα和cos(α-β)的值,再利用兩角差的正弦公式求得sinβ=sin[α-(α-β)]的值.

解答 解:∵α,β均為銳角,cosα=$\frac{2\sqrt{5}}{5}$,∴sinα=$\sqrt{{1-cos}^{2}α}$=$\frac{\sqrt{5}}{5}$,
∵sin(α-β)=-$\frac{3}{5}$,∴cos(α-β)=$\sqrt{{1-sin}^{2}(α-β)}$=$\frac{4}{5}$,
則sinβ=sin[α-(α-β)]=sinαcos(α-β)-cosαsin(α-β)=$\frac{\sqrt{5}}{5}•\frac{4}{5}$-$\frac{2\sqrt{5}}{5}$•(-$\frac{3}{5}$)=$\frac{2\sqrt{5}}{5}$,
故選:A.

點評 本題主要考查同角三角函數(shù)的基本關系,兩角差的正弦公式的應用,屬于基礎題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

14.設向量$\overrightarrow{a}$=(sin$\frac{π}{2}$x,cos$\frac{π}{2}$x),$\overrightarrow$=(sin$\frac{π}{2}$x,$\sqrt{3}$sin$\frac{π}{2}$x),x∈R,函數(shù)f(x)=$\overrightarrow{a}•(\overrightarrow{a}+2\overrightarrow)$,求:
(1)f(x)的最小正周期;
(2)f(x)在區(qū)間[0,1]上的最大值和最小值,以及取得最大值和最小值時x的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.在(1+x)+(1+x) 2+(1+x) 3+…+(1+x) 9的展開式中,x2的系數(shù)等于( 。
A.121B.120C.84D.45

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

12.(1)用分析法證明:$\sqrt{6}$+$\sqrt{5}$$>2\sqrt{2}$$+\sqrt{3}$;
(2)用反證法證明:$\sqrt{2}$,$\sqrt{5}$,$\sqrt{6}$不可能成等差數(shù)列.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.若|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,$\overrightarrow{a}$•$\overrightarrow$=1,則$\overrightarrow{a}$和$\overrightarrow$夾角大小為( 。
A.90°B.60°C.45°D.30°

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

9.如圖,矩形ABCD中,AB=4,AD=2,點P為BC的中點,且$\overrightarrow{DQ}$=λ$\overrightarrow{DC}$(λ∈R).
(Ⅰ)試用$\overrightarrow{AB}$和$\overrightarrow{AD}$表示$\overrightarrow{AP}$;
(Ⅱ)若$\overrightarrow{AQ}$•$\overrightarrow{DC}$=4時,求λ的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

16.在△ABC中,直線AB的方程為3x-2y-1=0,直線AC的方程為2x+3y-18=0.直線BC的方程為3x+4y-m=0(m≠25).
(1)求證:△ABC為直角三角形;
(2)當△ABC的BC邊上的高為1時,求m的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.如圖,AB與圓O相切于點B,CD為圓O上兩點,延長AD交圓O于點E,BF∥CD且交ED于點F
(I)證明:△BCE∽△FDB;
(Ⅱ)若BE為圓O的直徑,∠EBF=∠CBD,BF=2,求AD•ED.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.某三棱錐的三視圖如圖所示,則該三棱錐的外接球的表面積是( 。
A.B.C.$\sqrt{5}$πD.

查看答案和解析>>

同步練習冊答案