分析 (1)設等比數(shù)列{bn}的公比為q,則1+d=b1q,1+4d=$_{1}{q}^{2}$,1+13d=b1q3,d>0.聯(lián)立解出即可得出.(2)數(shù)列{cn}對任意正整數(shù)n,均有$\frac{c_1}{b_1}+\frac{c_2}{b_2}+\frac{c_3}{b_3}+…+\frac{c_n}{b_n}={a_{n+1}}$,n=1時,$\frac{{c}_{1}}{_{1}}$=a2,解得c1.n≥2時,$\frac{{c}_{1}}{_{1}}+\frac{{c}_{2}}{_{2}}$+…+$\frac{{c}_{n-1}}{_{n-1}}$=an,相減可得$\frac{{c}_{n}}{_{n}}$=d,可得cn=2×3n-1,再利用等比數(shù)列的求和公式即可得出.
解答 解:(1)設等比數(shù)列{bn}的公比為q,則1+d=b1q,1+4d=$_{1}{q}^{2}$,1+13d=b1q3,d>0.
聯(lián)立解得:d=2,q=3,b1=1.
∴an=1+2(n-1)=2n-1.
bn=3n-1.
(2)數(shù)列{cn}對任意正整數(shù)n,均有$\frac{c_1}{b_1}+\frac{c_2}{b_2}+\frac{c_3}{b_3}+…+\frac{c_n}{b_n}={a_{n+1}}$,
n=1時,$\frac{{c}_{1}}{_{1}}$=a2,解得c1=3.
n≥2時,$\frac{{c}_{1}}{_{1}}+\frac{{c}_{2}}{_{2}}$+…+$\frac{{c}_{n-1}}{_{n-1}}$=an,
∴$\frac{{c}_{n}}{_{n}}$=d,可得cn=2×3n-1,
∴c1+c2+c3+…+c2004=$2×\frac{{3}^{2004}-1}{3-1}$=32004-1.
點評 本題考查了數(shù)列遞推關系、等差數(shù)列與等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
零件數(shù)(個) | 18 | 20 | 22 |
加工時間y(分鐘) | 27 | 30 | 33 |
A. | 84分鐘 | B. | 94分鐘 | C. | 102分鐘 | D. | 112分鐘 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 函數(shù)f(x)的定義域關于原點對稱是f(x)具有奇偶性的充分不必要條件 | |
B. | 命題“若x≥4且y≥2,則x+y≥6”的逆否命題為“若x+y<6,則x<4且y<2” | |
C. | 若p:?x≥0,x2-x+1>0,則¬p:?x<0,x2-x+1≤0 | |
D. | 己知n∈N,則冪函數(shù)y=x3n-7為偶函數(shù),且在x∈(0,+∞)上單調遞減的充分必要條件為n=1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $2\sqrt{3}$ | B. | $4\sqrt{3}$ | C. | $6\sqrt{3}$ | D. | $12\sqrt{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-1,1) | B. | [0,1) | C. | [0,3] | D. | ∅ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | -$\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com