16.-2是10與x的等差中項(xiàng),則x=-14.

分析 利用等差中項(xiàng)定義直接求解.

解答 解:∵-2是10與x的等差中項(xiàng),
∴$\frac{10+x}{2}=-2$,
解得x=-14.
故答案為:-14.

點(diǎn)評(píng) 本題考查實(shí)數(shù)值的求法,考查等差中項(xiàng)、等差數(shù)列等基礎(chǔ)知識(shí),考查推理論證能力、運(yùn)算求解能力,考查化歸與轉(zhuǎn)化思想、函數(shù)與方程思想,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.我們知道,如果定義在某區(qū)間上的函數(shù)f(x)滿足對(duì)該區(qū)間上的任意兩個(gè)數(shù)x1,x2,總有不等式$\frac{{f({x_1})+f({x_2})}}{2}≤f({\frac{{{x_1}+{x_2}}}{2}})$成立,則稱函數(shù)f(x)在該區(qū)間上的向上凸函數(shù)(簡稱上凸).類比上述定義,對(duì)于數(shù)列{an},如果對(duì)任意正整數(shù)n,總有不等式$\frac{{{a_n}+{a_{n+2}}}}{2}≤{a_{n+1}}$成立,則稱數(shù)列{an}為向上凸數(shù)列(簡稱上凸數(shù)列),現(xiàn)有數(shù)列{an}滿足如下兩個(gè)條件:
①數(shù)列{an}為上凸數(shù)列,且a1=1,a10=28;
②對(duì)正整數(shù)n(1≤n<10,n∈N*),都有|an-bn|≤20,其中${b_n}={n^2}-6n+10$,則數(shù)列{an}中的第三項(xiàng)a3的取值范圍為[7,19].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.f(x)=x2-2x+alnx.
(Ⅰ)若a=2,求f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)討論f(x)的單調(diào)性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在《我是歌手》的比賽中,有6位歌手(1~6號(hào))進(jìn)入決賽,在決賽中由現(xiàn)場的百家媒體投票選出最受歡迎的歌手,各家媒體獨(dú)立地在投票器上選出3位候選人,其中媒體甲是1號(hào)歌手的歌迷,他必選1號(hào),另在2號(hào)至6號(hào)中隨機(jī)的選2名;媒體乙不欣賞2號(hào)歌手,他一定不選2號(hào),;媒體丙對(duì)6位歌手的演唱沒有偏愛,因此在1至6號(hào)歌手中隨機(jī)的選出3名.
(1)求媒體甲選中5號(hào)且媒體乙未選中5號(hào)歌手的概率;
(2)ξ表示5號(hào)歌手得到媒體甲,乙,丙的票數(shù)之和,求ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知數(shù)列{an}中,已知${a_1}=\frac{2}{3}$,a2=1,2an=3an-1-an-2(n≥3).
(1)求a3的值;
(2)證明:數(shù)列{an-an-1}(n≥2)是等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知函數(shù)f(x)=sin$\frac{π}{2}$x-1(x<0),g(x)=logax(a>0,且a≠1).若它們的圖象上存在關(guān)于y軸對(duì)稱的點(diǎn)至少有3對(duì),則實(shí)數(shù)a的取值范圍是( 。
A.(0,$\frac{\sqrt{5}}{5}$)B.($\frac{\sqrt{5}}{5}$,1)C.(-∞,-1)D.(0,$\frac{\sqrt{3}}{3}$)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.已知函數(shù)f(x)=ex-ax+a(a∈R),其中e為自然對(duì)數(shù)的底數(shù).
(1)討論函數(shù)y=f(x)的單調(diào)性;
(2)若函數(shù)f(x)有兩個(gè)零點(diǎn)x1,x2,證明:x1+x2<2lna.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足Sn=2an-2;數(shù)列{bn}的前n項(xiàng)和為Tn,且滿足b1=1,b2=2,$\frac{T_n}{{{T_{n+1}}}}=\frac{b_n}{{{b_{n+2}}}}$.
(1)求數(shù)列{an}、{bn}的通項(xiàng)公式;
(2)是否存在正整數(shù)n,使得$\frac{{{a_n}+{b_n}+1}}{{{a_n}-{b_{n+1}}}}$恰為數(shù)列{bn}中的一項(xiàng)?若存在,求所有滿足要求的bn;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知函數(shù)f(x)=x2-(a+2)x+alnx,其中常數(shù)a>0.
(1)當(dāng)a=2時(shí),判斷函數(shù)f(x)的單調(diào)性;
(2)當(dāng)a=4時(shí),給出兩組直線:6x+y+m=0與3x-y+n=0,其中m,n為常數(shù),判斷這兩類直線中是否存在y=f(x)的切線,若存在,求出該切線方程.
(3)設(shè)定義在D上的函數(shù)y=h(x)在點(diǎn)P(x0,h(x0))處的切線方程為l:y=g(x),若$\frac{h(x)-g(x)}{{x-{x_0}}}>0$在D內(nèi)恒成立,則稱P為函數(shù)y=h(x)的“類對(duì)稱點(diǎn)”,當(dāng)a=4時(shí),試問y=f(x)是否存在“類對(duì)稱點(diǎn)”,若存在,請(qǐng)至少求出一個(gè)“類對(duì)稱點(diǎn)”的橫坐標(biāo),若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案